首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based upon a large database, this paper analyzes the record of bauxite mine production, exploration success, and resource depletion and evaluates the availability of bauxite reserves in the near future. The record clearly shows that for the past 50 years world bauxite production rose by an annual increase of over 5% while per capita consumption rose during the same period by about 4%. Time trends of the world bauxite reserve life index (RLI); that is, known world reserves of a given year divided by world production of the same year, are episodic and seem to follow bauxite price cycles. The present-day RLI indicates adequate bauxite supply for about 180 years and is the same as it was in 1950. However, if an annual growth rate of 5% is considered, the currently known reserves will be exhausted within the next 20 years and the reserve base will be adequate for not more than 25 years. This scenario is based, of course, on the unrealistic assumption that future exploration efforts fail to discover additional reserves. Evaluation of the quality, in terms of bauxite signatures, and quantity of presently known bauxite prospects that may be mined in future suggests that there is sufficient potential for adequate bauxite supply for the next 20 to 25 years at least. Bauxite signatures cover a wide range of values that allows selection of the most favorable bauxite prospects for future mining, both in economic as well as environmental terms. Although, there is the general believe that the world abundance of bauxite resources will ensure sufficient supply to meet future demands significant additional reserves have to be discovered if exponential growth rates continue. As the question of future bauxite supply is subject to economic and geologic principles one has to take into consideration that increasing exploration maturity in many mineral provinces will make it difficult to locate additional bauxite reserves and that decreasing real commodity prices will influence the level of investment in bauxite exploration.  相似文献   

2.
This article reviews the theoretical foundations for the concept of peak minerals; drawing on similarities and differences with peak oil as modelled using Hubbert style curves. Whilst several studies have applied peak modelling to selected minerals, discussion of the appropriateness of using Hubbert style curves in the minerals context remains largely unexplored. Our discussion focuses on a comparison between oil and minerals, on the key variables: rates of discovery, estimates of ultimately recoverable resources and demand and production trends. With respect to minerals, there are several obstacles which complicate the application of Hubbert style curves to the prediction of future mineral production, including the lack of accurate discovery data, the effect of uncertain reserve estimates, and varying ore quality and quantity. Another notable difference is that while oil is often combusted during use, minerals are used to make metals which are inherently recyclable. Notwithstanding, by using a range of estimates of resources and/or reserves, a period of time can be identified which indicates when a peak in minerals production may occur. This information may then be used to plan for a transition from using a potentially constrained resource, to using substitutes if available, or to reducing demand for that mineral in society.  相似文献   

3.
The geological coal resource of the U.S. is abundant and proved coal reserves are listed as the world’s largest. However, the reserves are unevenly distributed and located in a small number of states, giving them major influence over future production. A long history of coal mining provides detailed time series of production and reserve estimates, which can be used to identify historical trends. In reviewing the historical evolution of coal reserves, one can state that the trend here does not point toward any major increases in available recoverable reserves; rather the opposite is true due to restrictions and increased focus on environmental impacts from coal extraction. Future coal production will not be entirely determined by what is geologically available, but rather by the fraction of that amount that is practically recoverable. Consequently, the historical trend toward reduced recoverable amounts is likely to continue into the future, with even stricter regulations imposed by increased environmental concern. Long-term outlooks can be created in many ways, but ultimately the production must be limited by recoverable volumes since coal is a finite resource. The geologic amounts of coal are of much less importance to future production than the practically recoverable volumes. The geological coal supply might be vast, but the important question is how large the share that can be extracted under present restrictions are and how those restrictions will develop in the future. Production limitations might therefore appear much sooner than previously expected.  相似文献   

4.
大柴旦盐湖固体钾盐矿物主要为软钾镁钒,其分布范围小,现有储量仅为1.04×106 t,不具备直接开采的条件。根据其特有的溶解性可通过固液转化的技术,在开采卤水钾的同时,将部分资源加以利用,是卤水钾矿的后备资源。  相似文献   

5.
A vital and indisputable link exists between phosphate rock and world food supply. Phosphate rock is the source of phosphorus used to make phosphatic fertilizers, essential for growing the food needed by humans in the world today and in the future. We modeled the depletion of the known reserves and reserve base (which includes reserves) of phosphate rock based on various scenarios for increasing population and future demand for phosphate. Using these scenarios, the presently known reserves will be depleted within about 50 years, and the remainder of the reserve base will be depleted within the next 100 years. For this model, we used rates of growth of demand for phosphate rock of between 1 and 1.7 percent annually. We also examined demand rates that decrease over time toward demand stasis. Growthrate scenarios that stabilize demand at the year 2100 are little different from unconstrained growth. Demand stabilization by 2025 extends the reserve base by only about 50 years. Additional considerations could affect these depletion scenarios, causing them to be substantially too high or too low. Nonetheless, the incluctable conclusion in a world of continuing phosphate demand is that society, to extend phosphate rock reserves and reserve base beyond the approximate 100 year depletion date, must find additional reserves and/ or reduce the rate of growth of phosphate demand in the future. Society must: 91) increase the efficiency of use of known resources of easily minable phosphate rock; (2) discover new, economically-minable resources; or (3) develop the technology to economically mine the vast but currently uneconomic resources of phosphate rock that exist in the world. Otherwise, the future availability of present-cost phosphate, and the cost or availability of world food will be compromised, perhaps substantially.  相似文献   

6.
In this summary of two comprehensive resource reports produced by the U.S. Bureau of Mines and the U.S. Geological Survey for the U.S. Bureau of Land Management, we discuss the mineral- and energyresource endowment of the 14-millon-acre Roswell Resource Area, New Mexico, managed by the Bureau of Land Management. The Bureau and Survey reports result from separate studies that are compilations of published and unpublished data and integrate new findings on the geology, geochemistry, geophysics, mineral, industrial, and energy commodities, and resources for the seven-county area. The reports have been used by the Bureau of Land Management in preparation of the Roswell Resource Area Resource Management Plan, and will have future use in nationwide mineral- and energy-resource inventories and assessments, as reference and training documents, and as public-information tools.In the Roswell Resource Area, many metals, industrial mineral commodities, and energy resources are being, or have been, produced or prospected. These include metals and high-technology materials, such as copper, gold, silver, thorium, uranium and/or vanadium, rare-earth element minerals, iron, manganese, tungsten, lead, zinc, and molybdenum; industrial mineral resources, including barite, limestone/dolomite, caliche, clay, fluorspar, gypsum, scoria, aggregate, and sand and gravel; and fuels and associated resources, such as oil, gas, tar sand and heavy oil, coal, and gases associated with hydrocarbons. Other commodities that have yet to be identified in economic concentrations include potash, halite, polyhalite, anhydrite, sulfur, feldspar, building stone and decorative rock, brines, various gases associated with oil and gas exploration, and carbon dioxide.  相似文献   

7.
Application of geostatistics in estimating recoverable reserves of beach sand deposit is rare. This paper made an attempt to estimate local recoverable reserves using disjunctive kriging and discrete Gaussian model considering support and information effects for a beach sand deposit located in the eastern part of India. The dependence of different selective mining unit (SMU) sizes and different production sampling strategies on the estimated tonnage, metal quantity, and the ore tonnage versus metal quantity relationships has been examined. The results of the study show that nonlinear geostatistics should be used for more precise assessment of the grade, ore tonnage, and metal quantity and their relationships, which are necessary for recoverable reserve estimation. In selective mining operation, both support and information effects have significant influence on recoverable reserve. Recoverable reserve estimation based on SMU involves estimating grade distributions of mining unit with much bigger support than the available drill core sample data. Information effect comes into picture from the real scenario where the actual grades of the blocks remain unknown even during mining. At the mining stage, discrimination of ore and waste blocks is carried out based on estimated grades of the production samples and it is likely that the blocks might be misclassified as either ore or waste and thus sent to wrong destination. Information effect modeling makes the estimation more reliable by taking care of misclassification.  相似文献   

8.
The mining of primary metals is critical for a range of modern infrastructure and goods and the continuing growth in global population and consumption means that these primary metals are expected to remain in high demand. However, metallic deposits are, in essence, finite and non-renewable—leading to some concern that we may run out of a given metal in the future. Here, we address this concern by presenting a brief review of the reporting of mineral resource estimates, compiling detailed datasets for national and global trends in mineral resources for numerous metals, and present detailed case studies of major mining projects or fields. The evidence clearly shows strong growth in known mineral resources and cumulative production over time rather than any evidence of gradual resource depletion. In addition, the key factors that already govern existing mining projects and mineral resources are certainly social, environmental and economic in nature rather than geological or related to physical resource depletion. Overall, there is great room for optimism in terms of humankind’s ability to supply future generations with the metals they will require.  相似文献   

9.
The enrichment ratio (ER), defined as the ratio of grade of a metal element in a deposit to the crustal abundance of the metal, is proposed for assessing mineral resources. According to the definition, the enrichment ratio of a polymetallic deposit is given as a sum of enrichment ratios of all metals. The relation between ER and the cumulative tonnage integrated from the high ER side of about 4750 deposits in the world is approximated by the combination of three exponential functions crossing at ER values of 16 · 103 and 600. High ER deposits are expected for the commodities Ag, Pb, and Au+Ag, and for epithermal, mesothermal, unconformity-related and vein types. In contrast, low ER deposits are typical for the commodities Cu, Mn, Mo, Ni, and U, and for chemically precipitated, Cyprus, laterite, orthomagmatic, pegmatite, placer, porphyry, and sandstone deposits. The critical ER value of the low ER class (the differential metal amount decreases with decreasing ER in the regions lower than the value) is 250 in all deposits, 610 in W+Mo, 2800 in Pb+Zn and 360 in Au+Ag, 530 in massive sulfides, 160 in the orthomagmatic type, 170 in placers, 220 in the porphyry type, 1900 in the replacement type, 580 in the stratabound type, 3400 in the unconformity-related type, and 1700 in vein type deposits. The frequency proportion determined by a keyword and a commodity provides valuable suggestions for mineral exploration: for example, the exploration target for chromite is a deposit characterized as orthomagmatic, whereas the expected commodity of a newly developed orthomagmatic deposit is chromite.  相似文献   

10.
Proven reserves of liquid hydrocarbons are now assessed at between 950 and 1,000 billion barrels, depending on the source. Their life expectancy at the current rate of world production is about 41 to 45 years. This lifetime is much longer than what was predicted in both 1970 and 1980. However, this wealth of resources does not necessarily mean that the security of oil supplies is guaranteed for all countries. Oil reserves are unequally distributed from a geopolitical standpoint. Reserves and output are mainly due to big fields (with more than 500 million barrels of initial reserves).Though oil supplies seem to be ensured for the coming 30 to 40 years, what does the picture look like beyond 2020–20307 The increased lifetime of proven oil reserves has been apparent only in the last 10 to 20 years. The considerable increase in proven oil reserves reported after 1986 is, in fact, mainly due to revisions and extensions, rather than to new sources of oil: conventional oil (with the price per barrel of oil on the order of $20 and recovery rate around 30 percent) remaining to be discovered today; oil resources stemming from an improvement in recovery rate; oil resources resulting from exploitation of new zones, such as deep sea zones; and unconventional types of oil, such as extra-heavy crudes, tar sands, shale oils, and liquid hydrocarbons from chemical-enhanced oil recovery methods.  相似文献   

11.
Industrial, technological, and economic developments depend on the availability of metallic raw materials. As a greater fraction of the Earth’s population has become part of developed economies and as developed societies have become more affluent, the demand on metallic mineral resources has increased. Yet metallic minerals are non-renewable natural resources, the supply of which, even if unknown and potentially large, is finite. An analysis of historical extraction trends for eighteen metals, going back to the year 1900, demonstrates that demand of metallic raw materials has increased as a result of both increase in world population and increase in per-capita consumption. These eighteen metals can be arranged into four distinct groups, for each of which it is possible to identify a consistent pattern of per-capita demand as a function of time. These patterns can, in turn, be explained in terms of the industrial and technological applications, and in some cases conventional uses as well, of the metals in each group. Under the assumption that these patterns will continue into the future, and that world population will grow by no more than about 50% by the year 2100, one can estimate the amount of metallic raw materials that will be required to sustain the world’s economy throughout the twenty-first century. From the present until the year 2100, the world can be expected to require about one order of magnitude more metal than the total amount of metal that fueled technological and economic growth between the age of steam and the present day. For most of the metals considered here, this corresponds to 5–10 times the amount of metal contained in proven ore reserves. The two chief driving factors of this expected demand are growth in per-capita consumption and present-day absolute population numbers. World population is already so large that additional population growth makes only a small contribution to the expected future demand of metallic raw materials. It is not known whether or not the amount of metal required to sustain the world’s economy throughout this century exists in exploitable mineral resources. In the accompanying paper, I show that it is nevertheless possible to make statistical inferences about the size distribution of the mineral deposits that will need to be discovered and developed in order to satisfy the expected demand. Those results neither prove nor disprove that the needed resources exist but can be used to improve our understanding of the challenges facing future supply of metallic raw materials.  相似文献   

12.
Fossil fuels are finite and nonrenewable. In due course, they will become scarce and costly. Their role in powering modern economies is so vital as to warrant a review of ultimately recoverable reserves and of plausible future consumption patterns. Over the past 50 years, many oil companies, geologists, governments, and private corporations have performed scores of studies of Estimated Ultimately Recoverable (EUR) global oil. Taken together, the great majority of these studies reflect a consensus that EUR oil reserves lie within the range of 1800 to 2200 billion barrels. Given this range, a simple model is used to calculate that world oil production is likely to peak sometime between 2007 and 2019. The global transportation sector, almost totally dependent on oil, could be especially hard hit unless vehicles fueled by sources other than petroleum are developed and rapidly deployed.  相似文献   

13.
The U.S. Geological Survey National Minerals Information Center (NMIC) is the U.S. Government agency tasked with the collection, analysis, and dissemination of information on the production, consumption, import, export, and other measures of the flows of non-fuel mineral commodities of importance to the U.S. economy and national security. The NMIC and its agency predecessors have maintained a database of this information, collected and published annually, dating back to the beginning of the twentieth century. Time series analysis of annual information from the NMIC provides the opportunity to identify trends in the supply chains of the minerals and metals which are increasingly in demand for advanced technologies. The identification of trends in data for net import reliance, country concentration of production, global demand, price volatility, and other measures, when combined with world governance indicators, can be used to focus attention on individual mineral commodities where supply chain restrictions may develop. Specific examples for U.S. net import reliance, global tantalum primary mining, and mineral criticality screening are presented to illustrate the utility of time series analysis of trends in mineral commodity supply and demand, the types of data required, and the limitations of currently available information.  相似文献   

14.
This article examines the Hotelling model of optimal nonrenewable resource extraction in light of empirical evidence that petroleum and minerals prices have been trendless despite resource scarcity. In particular, we examine how endogenous technology-induced shifts in the cost function would have evolved over time if they were to maintain a constant market price for nonrenewable resources. We calibrate our model using empirical data on world oil, and find that, depending on the estimate of the initial stock of reserve, oil reserves will likely be depleted some time between the years 2040 and 2075.  相似文献   

15.
Ore value-tonnage diagrams for resource assessment   总被引:4,自引:0,他引:4  
An ore value-tonnage diagram has been proposed for assessing mineral resources. Diagrams of W+Mo, and Pb+Zn deposits show a good linearity between ore value and logarithms of cumulative ore tonnage. Diagrams of the massive sulfide, orthomagmatic, placer, porphyry, replacement, and stratabound types are also linear. It is assumed, therefore, that deposits of each of these commodities and these types belong to a single population. In contrast, the ore value-tonnage relations of all the deposits analyzed here is approximated by the combination of two exponential functions. The same feature is seen for deposits of the Cu+W+Mo, Cu+Pb+Zn, and Au+Ag commodities, and of the vein and unconformity-related types. This suggests that deposits belonging to each of such categories are divided into the high and low value groups. We can expect, accordingly, to find high value deposits of such categories.  相似文献   

16.
四川盆地地下卤水资源优势及综合开发前景   总被引:3,自引:0,他引:3       下载免费PDF全文
四川盆地地下卤水自震旦系至白垩系各层系皆有分布。卤水具有分布广泛、资源丰富、品质优异、高承压及气卤同产等优势特点,是四川得天独厚的液态矿产资源。卤水中含有K+、Br-I、-、B3+、Li+、Sr2+、Rb+等多种有用组分,皆为国家紧缺和紧俏物质,其含量多数可达工业开采品位,为优质化工原料水,经济价值极高,综合开发利用前景广阔。  相似文献   

17.
The Resourcing Future Generations (RFG) program is a global strategy proposed by the International Union of Geological Sciences to meet global demand for natural resources. The Belt and Road (B&R) initiative of China provides a great opportunity for promoting the RFG across much of the Eurasian continent. The countries covered by the B&R initiative are mostly low-income economies. With rapid developments of economy and infrastructure construction, these countries are set to have huge demands for mineral resources in the future. However, the proven mineral reserves in this region are too limited, and the region’s overall level of metal recycling is far from optimistic. These countries are expected to have obstacles in meeting future demands. However, the regional Tethyan metallogenic domain and Central Asia metallogenic district are key areas for new discoveries of mineral resources, possessing a variety of mineral resources with a positive prospecting potential. The B&R initiative of China provides favorable opportunity for mutual beneficial cooperation to improve regional exploration and prospecting through geological mapping, inter-comparison study on Tethyan metallogenic domain, joint assessment of mineral resource potentials, joint training of geological engineers and workers and building information systems.  相似文献   

18.
青海盐湖镁资源开发与利用研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
简要介绍了青海盐湖资源的分布、储量,重点对青海盐湖镁资源的研究开发和利用现状进行了综述,分析了其中存在的问题和关键技术瓶颈。在此基础上,对未来青海盐湖镁资源的高值化利用和研究方向进行了展望,并提出了相应的建议。  相似文献   

19.
Uncertainty Estimate in Resources Assessment: A Geostatistical Contribution   总被引:2,自引:0,他引:2  
For many decades the mining industry regarded resources/reserves estimation and classification as a mere calculation requiring basic mathematical and geological knowledge. Most methods were based on geometrical procedures and spatial data distribution. Therefore, uncertainty associated with tonnages and grades either were ignored or mishandled, although various mining codes require a measure of confidence in the values reported. Traditional methods fail in reporting the level of confidence in the quantities and grades. Conversely, kriging is known to provide the best estimate and its associated variance. Among kriging methods, Ordinary Kriging (OK) probably is the most widely used one for mineral resource/reserve estimation, mainly because of its robustness and its facility in uncertainty assessment by using the kriging variance. It also is known that OK variance is unable to recognize local data variability, an important issue when heterogeneous mineral deposits with higher and poorer grade zones are being evaluated. Altenatively, stochastic simulation are used to build local or global uncertainty about a geological attribute respecting its statistical moments. This study investigates methods capable of incorporating uncertainty to the estimates of resources and reserves via OK and sequential gaussian and sequential indicator simulation The results showed that for the type of mineralization studied all methods classified the tonnages similarly. The methods are illustrated using an exploration drill hole data sets from a large Brazilian coal deposit.  相似文献   

20.
本文简要介绍了青海盐湖资源的分布、储量,重点对青海盐湖镁资源的研究开发和利用现状进行了综述,分析了其中存在的问题和关键技术瓶颈。在此基础上,对未来青海盐湖镁资源的高值化利用和研究方向进行了展望,并提出了相应的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号