首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behaviour of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified.Several reported works can be recovered as limiting cases with appropriate simplifications.  相似文献   

2.
3.
The magnetohydrodynamic stability of a streaming liquid cylinder subject to surface tension and pervaded by a magnetic vacuum field has been elaborated for all axisymmetric and non-axisymmetric disturbances. The dispersion relation is obtained and studied analytically and numerically. the streaming has always a destabilizing effect. The axial magnetic fields inside and outside the jet have always stabilizing effects for all perturbations. The transverse magnetic field has a destabilizing effect. However, if the axial field intensity is so high and paramount over that the transverse field, the destabilizing character of the model is suppressed. The latter is satisfied if the Alfvén wave velocity is greater than the equilibrium liquid velocity.  相似文献   

4.
The stability of a self-gravitating streaming fluid cylinder acting upon the electromagnetic force ambient with a tenuous medium of negligible inertia but pervaded by a transverse varying fields, has been developed. The stability criterion is derived, discussed analytically and the results are verified numerically. The cylinder is purely self-gravitating unstable in small axisymmetric domain and stable in all the rest states. modes while the transverse field exterior the cylinder is stabilizing or destabilizing according to restrictions in the asymmetric modes and purely destabilizing in the symmetric one. The streaming has a strong destabilizing influence and that influence is independent of the kind of the perturbation and wavelengths. Both the streaming and the electromagnetic influences increase the gravitational axisymmetric unstable domain and shrink those of stability in the axisymmetric and non-axisymmetric perturbations. Moreover, the stabilizing character of the Lorentz force of some states, is physicaly interpreted, will not be able to suppress the gravitational instability because the gravitational instability of sufficiently long waves will persist.  相似文献   

5.
The stability of helical magnetic fields is investigated when fluid motions are present along the lines of force. The general dispersion relation is obtained and some limiting cases are examined. It is established that the configuration can be unstable when the velocity field exceeds a certain critical value. This result is to be compared with the case when the helical fields confined by a rigid boundary are stable when the energy density in the velocity field is at least equal to that of the magnetic field.  相似文献   

6.
The dynamical oscillation and instability of a gas cylinder of zero inertia immersed in a resistive liquid has been developed for symmetric perturbations. In the absence of the magnetic field we have used the conservation of energy to study such problem for all symmetric and asymmetric perturbations. In the latter it is found that the temporal amplification is much lower than that of the full fluid jet. The model is capillary stable for all short and long wavelengths in the asymmetric perturbation while in the symmetric disturbances it is stabilizing or not according the perturbed wavelength is shorter than the gas cylinder circumference or not. The resistivity is stabilizing or destabilizing according to restrictions. The electromagnetic body force is stabilizing for all wavelengths in the rotationally-symmetric disturbances. The Lorentz body force, for high magnetic field intensity, could be suppressing the destabilizing character of the present model. This may be due to the fact that the acting magnetic field is uniform and that the fluid is considered to be incompressible.  相似文献   

7.
The paper is the first in a series dealing with the structure of magnetic and rotating neutron stars including general relativistic effects. The geometry of fossile magnetic fields frozen in the highly conductive neutron star matter in a non-rotating (or weakly rotating) star is studied. § 2 treats the general poloidal field in a vacuum outside the star. The geometry of magnetic fields within the star — whose matter is governed by a barytropic equation of state — is restricted by the condition that the magnetic force density should be curl-free to maintain equilibrium (§ 3). Numerical results are obtained for a poloidal and a toroidal dipole field (§ 4).  相似文献   

8.
The fundamental equations are formulated using cylindrical polar coordinates and then solved in the unperturbed state. The perturbation equations are determined, simplified, integrated and the constants of integrations are identified by applying appropriate boundary conditions across the perturbed fluid interface. A cumbersome stability criterion for MHD inviscid compressible self-gravitating streaming fluid cylinder is derived. The magnetic field is stabilizing, the streaming is destabilizing while both of the self-gravitating and compressibility are stabilizing or not according to restrictions and that the gravitational instability of sufficiently long waves will persist. Several approximations are required to obtain Chandrasekhar's and Fermi's dispersion relation (Chandrasekhar and Fermi, 1953).  相似文献   

9.
The magneto-gravitational instability of an infinite, homogenous, and infinitely conducting plasma flowing through a porous medium is studied. The finite ion Larmor radius (FLR) effects and viscosity are also incorporated in the analysis. The prevalent magnetic field is assumed to be uniform and acting in the vertical direction. A general dispersion relation has been obtained from the relevant linearized perturbation equations of the problem. The wave propagation parallel and perpendicular to the direction of the magnetic field have been discussed. It is found that the condition of the instability is determined by the Jeans criterion for a self-gravitating, infinitely conducting, magnetized fluid through a porous medium. Furthermore, for transverse perturbation FLR is found to have stabilizing influence when the medium is considered inviscid.  相似文献   

10.
The study of resistive ballooning instabilities in line-tied coronal magnetic fields is extended by including viscosity in the stability analysis. The equations that govern the resistive ballooning instabilities are derived and the effects of parallel and perpendicular viscosity are included using Braginskii's stress tensor. Numerical solutions to these equations are obtained under the rigid wall boundary conditions for arcades with cylindrically-symmetric magnetic fields. It is found that viscosity has a stabilizing effect on the resistive ballooning instabilities with perpendicular viscosity being more important by far than parallel viscosity. The strong stabilizing effect of perpendicular viscosity can lead to complete stabilization for realistic values of the equilibrium quantities.Research Assistant at the Belgian Fund for Scientific Research.  相似文献   

11.
The stability of ballooning modes in coronal arcades is studied using linear visco-resistive MHD. Rigid wall conditions are adopted for modelling the photospheric line-tying of the magnetic field. The full Braginskii viscosity stress tensor is used and particular attention is given to the effect of the viscosity coefficient 3 which was left out of an earlier investigation by Van der Linden, Goossens, and Hood (1987, 1988). The numerical results for shearless arcades show that the coefficient 3 has a stabilizing effect. However, for realistic values of the equilibrium quantities the stabilizing effect by 3 can be neglected in comparison with the strong stabilizing effect of the perpendicular viscosity. The effect of magnetic field strength and mode number on stability are determined. In particular it is found that there exists a critical field strength for every mode number such that the mode is stable for weaker fields and unstable for stronger fields.  相似文献   

12.
We investigate the stability of the Hall‐MHD system and determine its importance for neutron stars at their birth, when they still consist of differentially rotating plasma permeated by extremely strong magnetic fields. We solve the linearised HallMHD equations in a spherical shell threaded by a homogeneous magnetic field. With the fluid/flow coupling and the Hall effect included, the magnetorotational instability and the Hall effect are both acting together. Results differ for magnetic fields aligned with the rotation axis and anti‐parallel magnetic fields. For a positive alignment of the magnetic field the instability grows on a rotational time‐scale for any sufficiently large magnetic Reynolds number. Even the magnetic fields which are stable against the MRI due to the magnetic diffusion are now susceptible to the shear‐Hall instability. In contrast, the negative alignment places strong restrictions on the growth and the magnitude of the fields, hindering the effectiveness of the Hall‐MRI. While non‐axisymmetric modes of the MRI can be suppressed by strong enough rotation, there is no such restriction when the Hall effect is present. The implications for the magnitude and the topology of the magnetic field of a young neutron star may be significant (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The gravitational instability of an infinite homogeneous finitely conducting viscid fluid through porous medium is studied in the presence of a uniform vertical magnetic field and finite ion Larmor radius (FLR) effects. The medium is considered uniformly rotating along and perpendicular to the direction of the prevalent magnetic field. A general dispersion relation is obtained from the relevant linearized perturbation equations of the problem. Furthermore, the wave propagation along and perpendicular to the direction of existing magnetic field has been discussed for each direction of the rotation. It is found that the simultaneous presence of viscosity finite conductivity, rotation, medium porosity, and FLR corrections does not essentially change the Jeans's instability condition. The stabilizing influence of FLR in the case of transverse propagation is reasserted for a non-rotating and inviscid porous medium. It is shown that the finite conductivity has destabilizing influence on the transverse wave propagation whereas for longitudinal propagation finite conductivity does not affect the Jean's criterion.  相似文献   

14.
Instability of a horizontal rotating layer of a self-gravitating electrically conducting fluid has been studied to simultaneously, include the effects of Hall currents and magnetic resistivity. The prevailing magnetic field is uniform and acts along the vertical direction along which the fluid has a one-dimensional density gradient. The solution has been obtained through the variational methods. The dispersion relation obtained has been solved numerically and it is found that Hall currents as well as magnetic resistivity have a destabilizing influence. Coriolis forces, however, have a stabilizing influence.  相似文献   

15.
无力场被广泛用来模拟太阳活动区的强磁场,本文从Bernstein能量原理出发,导出了无力场能量原理的普遍形式,并给出了若干稳定性的充分条件,它们可方便而有效地对无力场进行稳定性判断。  相似文献   

16.
The one-dimensional non-linear equations for a viscous fluid with finite thermal conductivity are solved to get an exact solution for a steady vertical flow. The stability of such a steady flow is examined to find that the viscosity has a very pronounced stabilizing influence on convective and acoustic modes.  相似文献   

17.
The paper investigates the effects of thermal conductivity and non-uniform magnetic field on the gravitational instability of a non-uniformly rotating infinitely extending axisymmetric cylinder in a homogeneous heat conducting medium. The non-uniform rotation and magnetic field are supposed to act along θ and z directions of the cylinder. It is found that the gravitational instability of this general problem is determined by the same criterion as obtained by Dhiman and Dadwal (Astrophys. Space Sci. 325(2):195–200, 2010) for the self-gravitating isothermal medium in the presence of non-uniform rotation and magnetic field with the only difference that adiabatic sound velocity is now replaced by the isothermal sound velocity. It is found that the thermal conductivity has stabilizing effect on the onset of gravitational instability. Further, the stabilizing/destabilizing effect of the non-uniform magnetic field on the gravitational instability of heat conducting medium has been discussed and is illustrated by considering some special forms of the basic magnetic fields.  相似文献   

18.
It is show that axisymmetric stationary vacuum solutions of the general scalar tensor theory of gravitation proposed by Nordvedt and later discussed by Barker and others can be obtained from the solutions of the axisymmetric stationary Einstein vacuum fields and also from the axisymmetric static vacuum fields of the general scalar tensor theory. The scalar tensor analogue of the Kerr solution has been obtained.  相似文献   

19.
The effect of finite conductivity on the Rayleigh-Taylor instability of an incompressible, viscous rotating fluid through a porous medium has been studied in the presence of a two-dimensional horizontal magnetic field. It has been shown that the solution is characterized by a variational principle. By making use of the existence of the variational principle, proper solutions have been obtained for a semi-infinite fluid in which density has a one-dimensional (exponential) vertical stratification. The dispersion relation has been derived and solved numerically. It is found that finite resistivity and porosity have a destabilizing effect on the Rayleigh-Taylor instability while rotation has a stabilizing effect.  相似文献   

20.
The instability of a stratified layer of a self-gravitating plasma has been studied to include jointly the effects of viscosity, Coriolis forces and the finite Larmor radius (FLR). For a plasma permeated by a uniform horizontal magnetic field, the stability analysis has been carried out for a transverse mode of wave propagation. The solution has been obtained through variational methods for the case when the direction of axis of rotation is along the magnetic field. The analysis for the case when the direction of rotation is transverse to the magnetic field has also been considered and the solutions for this case have been obtained through integral approach. The dispersion relations have been derived in both the cases and solved numerically. It is found that both the viscous and FLR effects have a stabilizing influence on the growth rate of the unstable mode of disturbance. Coriolis forces are found to have stabilizing influence for small wave numbers and destabilizing for large wave numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号