首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landslide susceptibility assessment forms the basis of any hazard mapping, which is one of the essential parts of quantitative risk mapping. For the same study area, different susceptibility maps can be achieved depending on the type of susceptibility mapping methods, mapping unit, and scale. Although there are various methods of obtaining susceptibility maps, the efficiency and performance of each method should be evaluated. In this study the effect of mapping unit and susceptibility mapping method on landslide susceptibility assessment is investigated. When analyzing the effect of susceptibility mapping method, logistic regression (LR) which is widely used in landslide susceptibility mapping and, spatial regression (SR), which have not been used for landslide susceptibility mapping, are selected. The susceptibility maps with logistic and spatial regression models are obtained using two different mapping units namely slope unit-based and grid-based mapping units. The procedure for investigation of effect of mapping unit on different susceptibility mapping methods is applied to Kumluca watershed, in Bartin Province of Western Black Sea Region, Turkey. 18 factor maps are prepared for landslide susceptibility assessment in the study region. Geographic information systems and remote sensing techniques are used to create the landslide factor maps, to obtain susceptibility maps and to compare the results. The relative operating characteristics (ROC) curve is used to compare the predictive abilities of each model and mapping unit and also the accuracy is evaluated depending on the observations made during field surveys. By analyzing the area under the ROC curve for grid-based and slope unit-based mapping units, it can be concluded that SR model provide better predictive performance (0.774 in grids and 0.898 in slope units) as compared to the LR model (0.744 in grids and 0.820 in slope units). This result is also supported by the accuracy analysis. For both mapping units, the SR model provides more accurate result (0.55 for grids and 0.57 for slope units) than the LR model (0.50 for grids and 0.48 for slopes). The main reason for this better performance is that the spatial correlations between the mapping units are incorporated into the model in SR while this fact is not considered in LR model.  相似文献   

2.
In the international literature, although considerable amount of publications on the landslide susceptibility mapping exist, geomorphology as a conditioning factor is still used in limited number of studies. Considering this factor, the purpose of this article paper is to implement the geomorphologic parameters derived by reconstructed topography in landslide susceptibility mapping. According to the method employed in this study, terrain is generalized by the contours passed through the convex slopes of the valleys that were formed by fluvial erosion. Therefore, slope conditions before landsliding can be obtained. The reconstructed morphometric and geomorphologic units are taken into account as a conditioning parameter when assessing landslide susceptibility. Two different data, one of which is obtained from the reconstructed DEM, have been employed to produce two landslide susceptibility maps. The binary logistic regression is used to develop landslide susceptibility maps for the Melen Gorge in the Northwestern part of Turkey. Due to the high correct classification percentages and spatial effectiveness of the maps, the landslide susceptibility map comprised the reconstructed morphometric parameters exhibits a better performance than the other. Five different datasets are selected randomly to apply proper sampling strategy for training. As a consequence of the analyses, the most proper outcomes are obtained from the dataset of the reconstructed topographical parameters and geomorphologic units, and lithological variables that are implemented together. Correct classification percentage and root mean square error (RMSE) values of the validation dataset are calculated as 86.28% and 0.35, respectively. Prediction capacity of the different datasets reveal that the landslide susceptibility map obtained from the reconstructed parameters has a higher prediction capacity than the other. Moreover, the landslide susceptibility map obtained from the reconstructed parameters produces logical results.  相似文献   

3.

In landslide susceptibility studies, the type of mapping unit adopted affects the obtained models and maps in terms of accuracy, robustness, spatial resolution and geomorphological adequacy. To evaluate the optimal selection of these units, a test has been carried out in an important catchment of northern Sicily (the Imera River basin), where the spatial relationships between a set of predictors and an inventory of 1608 rotational/translational landslides were analysed using the multivariate adaptive regression splines (MARS) method. In particular, landslide susceptibility models were prepared and compared by adopting four different types of mapping units: the largely adopted grid cells (PX), the typical contributing area–controlled slope units (5000_SLU), the recently optimized parameter-free multiscale slope units (PF_SLU) and a new type (LCL_SLU) of slope unit obtained by crossing classic hydrological partitioning with landform classification. At the same time, once a pixel-based model was prepared, four different SLU modelling strategies were applied to each of the obtained slope unit layers, including two different types of pixel score zoning, a pixel score re-modelling and a factor-based SLU re-modelling. According to the achieved results, LCL_SLUs produced the highest performance and reliability, offering an optimal compromise between the high-performing but scattered and the smoothed but lower-performing prediction images that were obtained from pixel-based and hydrologic SLU–based modelling, respectively. Additionally, among the four adopted SLU modelling strategies, the new proposed procedure, which uses the zoned pixel–based score deciles as the LCL_SLU predictors for a new regression, resulted in the best outstanding performance (ROC_AUC?=?0.95).

  相似文献   

4.
The reliability of susceptibility maps depends largely on the quality of the information used for its evaluation. This study seeks to analyze the influence of sample size and type on the results of discriminant analysis applied to shallow landslide susceptibility assessment. The study also assesses the role of the terrain unit in discriminant analysis. To this end, two databases based on fieldwork (slope unit) and GIS with 15- and 45-m grid cells (grid cell-based unit), were compared in the same zone at La Pobla de Lillet, Spanish Eastern Pyrenees. The results show that although there is no significant influence of the type of sample, it is necessary to use at least half of the individuals of the sample in order to obtain good results from discriminant analysis. It is the terrain unit that exerts the biggest influence on the result of susceptibility. Some morphometric parameters related to landslides were compared in the databases. The slope unit of the fieldwork database better reflects the land characteristics than the regular grid used by GIS. The values of the variables obtained by GIS procedures are smooth, obtaining mean errors for the slope angle variable of 19.5 and 33.5% for the grids of 15 and 45 m, respectively, in the study area. One-way and T tests demonstrate that the smoothness of the values exerts a decisive influence on the discriminant results. Kappa’s analysis shows that there is no significant equivalence between some of the categorical variables used in both databases. The use of these variables demand the application of clearly defined criteria. The cell size should match the dimensions of the phenomenon analyzed given the unsuitability of the grid of 45 m in this study.  相似文献   

5.
山区地质灾害易发性评价对城镇地质灾害风险管理具有重要意义。本文以康定市为例,以斜坡单元为最小评价单元,选取高程、坡度、坡向、曲率、工程地质岩组、距道路距离、距断裂距离、距水系距离和斜坡结构等9个滑坡影响因子,根据各因子滑坡面积比曲线与证据权值曲线的突变点,划分滑坡影响因子二级状态,并对各影响因子进行相关性分析,剔除相关性较高的距道路距离因子,在此基础上,采用证据权模型进行滑坡易发性评价。对已有治理工程的斜坡单元,本文尝试利用折减系数法对其易发性进行进一步评价。结合现场调查,将研究区滑坡易发性程度划分为:极高易发、高易发、中等易发、低易发。评价结果表明,自然工况下极高易发区主要位于康定市炉城镇以及研究区北侧二道桥村一带,高易发区主要位于雅拉河、折多河与瓦斯沟河谷两侧,对治理工程所在的斜坡单元进行折减后,极高易发区面积由11.21%降至8.42%,滑坡比率由4.03降低至2.3,研究结果符合实际情况,模型精度达77.8%。评价结果较好地反映了康定市区的滑坡易发性分布情况,可为城镇精细化评价提供一定的参考依据。  相似文献   

6.
为深入探讨评价单元和非滑坡样本选取对滑坡易发性预测的影响,构建了一种基于自组织特征映射网络-随机森林模型的滑坡易发性评价模型。该模型针对栅格单元和斜坡单元在滑坡易发性评价中的不足,结合栅格单元和斜坡单元的相互关系,提出了滑坡易发性指数的优化计算方法。在此基础上,基于随机森林Tree Bagger分类器构建滑坡易发性评价模型,通过对比分析自组织特征映射网络和随机方法选取非滑坡样本对评价结果的影响,探讨自组织特征映射网络、随机森林和自组织特征映射网络-随机森林三种评价模型的有效性;将评价模型应用于大余县滑坡易发性评价。结果显示,随机森林模型和自组织特征映射网络-随机森林模型的预测精度较高,分别达到91.19%和94.94%,成功率曲线的AUC值分别为0.822和0.849,表明自组织特征映射网络-随机森林模型具有更高的预测率和成功率, 自组织特征映射网络聚类的预测精度虽然有限,但作为非滑坡样本的选择方法,能够有效提高随机森林模型的评价精度。  相似文献   

7.
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway.  相似文献   

8.
Due to the particular geographical location and complex geological conditions, the Three Gorges of China suffer from many landslide hazards that often result in tragic loss of life and economic devastation. To reduce the casualty and damages, an effective and accurate method of assessing landslide susceptibility is necessary. Object-based data mining methods were applied to a case study of landslide susceptibility assessment on the Guojiaba Town of the Three Gorges. The study area was partitioned into object mapping units derived from 30 m resolution Landsat TM images using multi-resolution segmentation algorithm based on the landslide factors of engineering rock group, homogeneity, and reservoir water level. Landslide locations were determined by interpretation of Landsat TM images and extensive field surveys. Eleven primary landslide-related factors were extracted from the topographic and geologic maps, and satellite images. Those factors were selected as independent variables using significance testing and correlation coefficient analysis, including slope, profile curvature, engineering rock group, slope structure, distance from faults, land cover, tasseled cap transformation wetness index, reservoir water level, homogeneity, and first and second principal components of the images. Decision tree and support vector machine (SVM) models with the optimal parameters were trained and then used to map landslide susceptibility, respectively. The analytical results were validated by comparing them with known landslides using the success rate and prediction rate curves and classification accuracy. The object-based SVM model has the highest correct rate of 89.36 % and a kappa coefficient of 0.8286 and outperforms the pixel-based SVM, object-based C5.0, and pixel-based SVM models.  相似文献   

9.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

10.
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses.In this study,we applied two novel deep learning algorithms,the recurrent neural network(RNN)and convolutional neural network(CNN),for national-scale landslide susceptibility mapping of Iran.We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors(altitude,slope degree,profile curvature,distance to river,aspect,plan curvature,distance to road,distance to fault,rainfall,geology and land-sue)to construct a geospatial database and divided the data into the training and the testing dataset.We then developed RNN and CNN algorithms to generate landslide susceptibility maps of Iran using the training dataset.We calculated the receiver operating characteristic(ROC)curve and used the area under the curve(AUC)for the quantitative evaluation of the landslide susceptibility maps using the testing dataset.Better performance in both the training and testing phases was provided by the RNN algorithm(AUC=0.88)than by the CNN algorithm(AUC=0.85).Finally,we calculated areas of susceptibility for each province and found that 6%and 14%of the land area of Iran is very highly and highly susceptible to future landslide events,respectively,with the highest susceptibility in Chaharmahal and Bakhtiari Province(33.8%).About 31%of cities of Iran are located in areas with high and very high landslide susceptibility.The results of the present study will be useful for the development of landslide hazard mitigation strategies.  相似文献   

11.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

12.
This case study presented herein compares the GIS-based landslide susceptibility mapping methods such as conditional probability (CP), logistic regression (LR), artificial neural networks (ANNs) and support vector machine (SVM) applied in Koyulhisar (Sivas, Turkey). Digital elevation model was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index, normalized difference vegetation index, distance from settlements and roads were used in the landslide susceptibility analyses. In the last stage of the analyses, landslide susceptibility maps were produced from ANN, CP, LR, SVM models, and they were then compared by means of their validations. However, area under curve values obtained from all four methodologies showed that the map obtained from ANN model looks like more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results also showed that the CP is a simple method in landslide susceptibility mapping and highly compatible with GIS operating features. Susceptibility maps can be easily produced using CP, because input process, calculation and output processes are very simple in CP model when compared with the other methods considered in this study.  相似文献   

13.
基于GIS与ANN模型的地震滑坡易发性区划   总被引:1,自引:0,他引:1  
基于遥感数据、地理信息系统(GIS)技术和人工神经网络(ANN)模型,开展地震滑坡易发性区划研究.2010年4月14日玉树地震后,基于航片与卫星影像目视解译,并辅以野外调查的方法,在地震区圈定了2036处地震诱发滑坡.选择高程、坡度、坡向、斜坡曲率、坡位、与水系距离、地层岩性、与断裂距离、与公路距离、归一化植被指数(NDVI)、与同震地表破裂距离、地震动峰值加速度(PGA)共12个因子作为地震滑坡易发性评价因子.这些因子均是应用GIS技术与遥感影像处理技术,基于地形数据、地质数据、遥感数据得到.训练样本中的滑动样本有两组,一组是滑坡区整个单滑坡体的质心位置,另一组是滑坡滑源区滑前的坡体高程最高的位置.应用这12个影响因子,分别采用这两组评价样本,基于ANN模型建立地震滑坡易发性索引图,基于GIS工具建立地震滑坡易发性分级图.分别应用训练样本中滑坡分布的点数据去检验各自的结果正确率,正确率分别为81.53%与81.29%,表明ANN模型是一种高效科学的地震滑坡易发性区划模型.  相似文献   

14.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

15.
The purpose of this study is to produce landslide susceptibility map of a landslide-prone area (Daguan County, China) by evidential belief function (EBF) model and weights of evidence (WoE) model to compare the results obtained. For this purpose, a landslide inventory map was constructed mainly based on earlier reports and aerial photographs, as well as, by carrying out field surveys. A total of 194 landslides were mapped. Then, the landslide inventory was randomly split into a training dataset; 70% (136 landslides) for training the models and the remaining 30% (58 landslides) was used for validation purpose. Then, a total number of 14 conditioning factors, such as slope angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), and topographic wetness index (TWI) were used in the analysis. Subsequently, landslide susceptibility maps were produced using the EBF and WoE models. Finally, the validation of landslide susceptibility map was accomplished with the area under the curve (AUC) method. The success rate curve showed that the area under the curve for EBF and WoE models were of 80.19% and 80.75% accuracy, respectively. Similarly, the validation result showed that the susceptibility map using EBF model has the prediction accuracy of 80.09%, while for WoE model, it was 79.79%. The results of this study showed that both landslide susceptibility maps obtained were successful and would be useful for regional spatial planning as well as for land cover planning.  相似文献   

16.
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.  相似文献   

17.
In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available.  相似文献   

18.
This study presented herein compares the effect of the sampling strategies by means of landslide inventory on the landslide susceptibility mapping. The conditional probability (CP) and artificial neural networks (ANN) models were applied in Sebinkarahisar (Giresun–Turkey). Digital elevation model was first constructed using a geographical information system software and parameter maps affecting the slope stability such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index and normalized difference vegetation index were considered. In the last stage of the analyses, landslide susceptibility maps were produced applying different sampling strategies such as; scarp, seed cell and point. The maps elaborated were then compared by means of their validations. Scarp sampling strategy gave the best results than the point, whereas the scarp and seed cell methods can be evaluated relatively similar. Comparison of the landslide susceptibility maps with known landslide locations indicated that the higher accuracy was obtained for ANN model using the scarp sampling strategy. The results obtained in this study also showed that the CP model can be used as a simple tool in assessment of the landslide susceptibility, because input process, calculations and output process are very simple and can be readily understood.  相似文献   

19.
The objective of this study is to map landslide susceptibility in Zigui segment of the Yangtze Three Gorges area that is known as one of the most landslide-prone areas in China by using data from light detection and ranging (LiDAR) and digital mapping camera (DMC). The likelihood ratio (LR) and logistic regression model (LRM) were used in this study. The work is divided into three phases. The first phase consists of data processing and analysis. In this phase, LiDAR and DMC data and geological maps were processed, and the landslide-controlling factors were derived such as landslide density, digital elevation model (DEM), slope angle, aspect, lithology, land use and distance from drainage. Among these, the landslide inventories, land use and drainage were constructed with both LiDAR and DMC data; DEM, slope angle and aspect were constructed with LiDAR data; lithology was taken from the 1:250,000 scale geological maps. The second phase is the logistic regression analysis. In this phase, the LR was applied to find the correlation between the landslide locations and the landslide-controlling factors, whereas the LRM was used to predict the occurrence of landslides based on six factors. To calculate the coefficients of LRM, 13,290,553 pixels was used, 29.5 % of the total pixels. The logical regression coefficients of landslide-controlling factors were obtained by logical regression analysis with SPSS 17.0 software. The accuracy of the LRM was 88.8 % on the whole. The third phase is landslide susceptibility mapping and verification. The mapping result was verified using the landslide location data, and 64.4 % landslide pixels distributed in “extremely high” zone and “high” zone; in addition, verification was performed using a success rate curve. The verification result show clearly that landslide susceptibility zones were in close agreement with actual landslide areas in the field. It is also shown that the factors that were applied in this study are appropriate; lithology, elevation and distance from drainage are primary factors for the landslide susceptibility mapping in the area, while slope angle, aspect and land use are secondary.  相似文献   

20.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号