首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Published low-resolution measurements of colour and polarisation over the face of M82 are discussed to separate the contribution of starlight and scattered light. We show that in all places of the middle and outer halo the scattered light comes predominantly from a central source of very high ultraviolett excess, the contribution of the disc is negligble there. The projected distributions of Hα-light and scattered continuum are of considerable similarity. Major extinction occurs in the southern half of the main body and of the inner halo; the northern half of the bright body, and the northern halo, are free of extinction, excluding some regions near the minor axis. The light of the central source is reddened only before it is scattered in the halo. The variation of the true degree of polarisation (after correction for starlight) is interpreted in terms of the variation of the mean scattering angle. From this, conclusions can be drawn concerning the location of the dust and the geometry of the illumination. The high brightness of the scattered light near the minor axis is caused axis is caused by a bright illuminating beam there, strengthened in some places by comparatively low scattering angles (45°) and a higher (projected) density of the scattering material. The stellar populations seen in M82 are different in the northern and in the southern halfs of the galaxy. The main body and the region of the northern “halo” consist of an old population of normal metal content (pop. I); the colours of the southern parts – which are partly considerably influenced by extinction – can be due to either metal poor F-stars (pop. II) or to young B-stars. To solve the latter ambiguity and at the same time the question in what direction the plane of the galaxy is tilted, good spectra of the faint southern parts of M82 outside the minor axis are needed.  相似文献   

2.
We present a surface photometry of M 82 of medium spatial resolution. Special attention was paid to good systematic photometric accuracy. The results are discussed in terms of the distribution of intensity, colour, reddening free parameteer Q and colour excess b -V. The bright elongated body of the galaxy consists of a moderately old stellar population (1 – 3 · 109a) and is only slightly reddned with the exception of the central absorption lane and the southern central region. The chaotic fan-like disturbance south of the center shows the colours of a very young (106 – 107a) highly reddened group of stars; according to polarimetric data from the literature we see their light scattered by dust. The population index Q of the inner halo is bluer than that of the disc everywhere (with the possible exception of the extreme western part). Two sources must be responsible for the illumination of the halo; one of them is responsible for the light from the great disturbances near the minor axis. Both may be located near center but must be partly shadowed. A major contribution of the disc to the illumination is less probable because the population index is different in most places of the halo from that of the disc. In addition to the dusty halo, obscuring dust is probably located to the south of the galaxy. This can be interpreted as part of a thick disc of dust embedding the stellar disc or as beeing connected to a proposed strip of B stars at the southern boundary of the visible disc. Both these interpretations lead to opposite results concerning the direction of the inclination of the disc. The inclination itself is estimated to lie between 80° and 90°.  相似文献   

3.
We report multi-wavelength observations towards IRAS 16547–4247, a luminous infrared source with a bolometric luminosity of 6.2 × 104 L . Dust continuum observations at 1.2-mm indicate that this object is associated with a dust cloud with a size of about 0.4 pc in diameter and a mass of about 1.3 × 103 M . Radio continuum observations show the presence of a triple radio source consisting of a compact central object and two outer lobes, separated by about 0.3 pc, symmetrically located from the central source. Molecular hydrogen line observations show a chain of knots that trace a collimated flow extending over 1.5 pc. We suggest that IRAS 16547–4247 corresponds to a dense massive core which hosts near its central region a high-mass star in an early stage of evolution. This massive YSO is undergoing the ejection of a collimated stellar wind which drives the H2 flow. The radio emission from the lobes arises in shocks resulting from the interaction of the collimated wind with the surrounding medium. We conclude that the thermal jets found in the formation of low-mass stars are also produced in high-mass stars.  相似文献   

4.
Image-tube filter photographs calibrated against photoelectric filter photometry have been used to give maps of M42 in absolute flux units over the central 15 arc min of the nebula in Hα, [Nii] (λ 6584 Å), Hβ and continuum at λ 4700 Å. Maps of the ratios Hα/[Nii] and (for the first time) of continuum/Hβ have been produced with unprecedented spatial resolution. These show that the gas to dust ratio is high near the exciting stars and falls strongly in the vicinity of large scale ionization fronts marked by minima in the Hα/[Nii] ratio. These results are interpreted in terms of detailed shell models containing either ice or graphite or silicate scattering particles. In all models there must be a central hole in the distribution of scattering particles. The effect of neutral globules and intrusions is investigated. It is found that all types of grain are trapped inside neutral intrusions near the centre of the nebula by the pressure of the Lα light surrounding the globule, but in the early evolution of the nebula particles can escape into the ionized medium when fronts are R-type. Ice grains escaping at this time will be destroyed for distances to the exciting stars less than 1 pc. These results can explain both the central hole in dust and the underabundance of oxygen in the ionized gas observed earlier. Arguments depending on colour index of the scattered light indicate that mixtures of scattered light from ice in the globules and from ice in the ionized medium can explain the observations, but that the graphite and silicate particles fail. A schematic model of the Orion Nebula is presented to attempt to explain the large scale phenomena observed here. It demonstrates that simple shell models for this nebula are dubious.  相似文献   

5.
We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ? 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration.We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ∼ 102 ionising stars). We show that room is left for IMFs extending to 120 M, rather than truncated at ∼ 60 M as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s−1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions.Catherine J. Cesarsky  相似文献   

6.
We have conducted UBVRI and Hα CCD photometry of five barred galaxies (NGC 2523, NGC 2950, NGC 3412, NGC 3945 and NGC 5383),along with SPH simulations, in order to understand the origin of young stellar populations in the nuclei of barred galaxies. The Hα emission, which is thought to be emitted by young stellar populations, is either absent or strongly concentrated in the nuclei of early-type galaxies (NGC 2950, NGC 3412 and NGC 3945),while they are observed in the nuclei and circumnuclear regions of intermediate-type galaxies with strong bars (NGC 2523 and NGC 5383).SPH simulations of realistic mass models for these galaxies show that some disc material can be driven into the nuclear region by a strong bar potential. This implies that the young stellar populations in the circumnuclear regions of barred galaxies can be formed out of such gas. The existence of nuclear dust lanes is an indication of an ongoing gas inflow and extremely young stellar populations in these galaxies, because nuclear dust lanes such as those in NGC 5383 are not long-lasting features according to our simulations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We suggest a model that explains the stratification peculiarities of the [O III] and Hα line emission from some of the ring nebulae around Wolf-Rayet stars. These peculiarities lie in the fact that the [O III] line emission regions are farther from the central star than the Hα regions, with the distance between them reaching several tenths of a parsec. We show that the radiative shock produced by a Wolf-Rayet stellar wind and propagating with a velocity of ~100 km s?1 cannot explain such large distances between these regions due to the low velocity of the gas outflow from the shock front. The suggested model takes into account the fact that the shock produced by a Wolf-Rayet stellar wind propagates in a two-phase medium: a rarefied medium and dense compact clouds. The gas downstream of a fast shock traveling in a rarefied gas compresses the clouds. Slow radiative shocks are generated in the clouds; these shocks heat the latter to temperatures at which ions of doubly ionized oxygen are formed. The clouds cool down, radiating in the lines of this ion, to temperatures at which Balmer line emission begins. The distance between the [O III] and Hα line emission regions is determined by the cooling time of the clouds downstream of the slow shock and by the velocity of the fast shock. Using the ring nebula NGC 6888 as an example, we show that the gas downstream of the fast shock must be at the phase of adiabatic expansion rather than deceleration with radiative cooling, as assumed previously.  相似文献   

8.
The observations of dust gas in diffuse and molecular clouds are shown to reflect not only their current state but their past history. The interpretation of infrared spectra of dust in molecular clouds using appropriate core-mantle grains shows that: (1) the kinds and amounts of ices, (2) the relative proportion of such important interstellar molecules as H2O and CO, (3) the evidence for the less abundant solid species X–CN, COS, H2S, and (4) the thermal history of the dust may all be demonstrated quantitatively from laboratory analog studies of ultraviolet photoprocessing of relevant ices and from theoretical studies of gas-dust interactions. In diffuse clouds the dust is shown to consist predominantly of refractory organic compounds which originate as residues of the photoprocessing of volatile ices in molecular clouds and which undergo further physical and chemical evolution in the diffuse clouds.Review paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

9.
We present the first infrared light curves of the binary V1430 Aql, in the bands J and K, plus V, R and I light curves and spectra covering the ranges of Hβ, Hα and Ca II-IRT lines. Our VRIJK data, together with published radial velocity curves, are analyzed to determine the orbital and stellar parameters of the system. Both stellar components present spectroscopic evidence of chromospheric activity, with emission excesses in the Hβ, Hα and Ca II-IRT lines. The measured ratio of the lines Hβ/Hα emission excesses can be interpreted as originated in plages. Our light curves also show photometric evidence of cool spots at least on one of the stars.  相似文献   

10.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present the results of polarimetric and photometricobservations of split Comet C/2001 A2 (LINEAR), which wereobtained at the 70-cm telescope of the Astronomical Observatoryof Kharkiv National University between 30 June and 31 July 2001.The brightest fragment of the comet, nucleus B, was observed.Eight narrowband cometary filters in the continuum and in emissionbands and a wideband red filter have been used. The comet wasobserved through apertures of 88, 33, and 19 arcsec. Polarizationphase curves were obtained for the continuum and for the firsttime, for NH2(0, 7, 0) emission. The degree of polarization ofthe light scattered by the dust decreases with the increase ofaperture size. An important temporal variation of the polarizationwith a rotation of the polarization plane was observed at twophase angles (26.5° and 36.2°). Molecular column densities and production rates of CN, C2,C3, and NH2 species are calculated in the framework of theHaser model. A comparative analysis of the temporal variations ofthe visual magnitudes, gas and dust production rates, dust colorand polarization are presented.  相似文献   

12.
To explain the variety of observed optical emission stratification in the shells around Wolf-Rayet stars, we have calculated the nonstationary cooling of a homogeneous gas layer heated to a temperature (0.4–2) × 105 K. We have assumed that the nebula is ionized by its central star and consists of a rarefied gas and a set of clouds with different densities through which adiabatic shock waves produced by the stellar wind propagate. Based on this model, we have determined the sequence in which the emission in Hα and in nebular oxygen lines appears. The Hα emission attributable to the electron-collision excitation of hydrogen atoms is produced earliest on the periphery of nebulae, the [O III] line emission follows next, and, finally, the Hα recombination emission is produced. The results obtained are in good agreement with the observational data.  相似文献   

13.
We present long-term spectral observations (R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.  相似文献   

14.
Spectroscopic observations of Comet Hale-Bopp were made at the 2.6 m Shajn Telescope of the Crimean Astrophysical Observatory. Some spectra were obtained with high spectral resolution, FWHM = 0.18–0.4Å, in the coude focus on February 22 and 26, 1997. The observations were made in selected spectral windows (4805–4872 Å,6528–6595 Å, 7186–7253 Å, 8276–8408 Å).The spectrograph slit was centered on the nucleus and had dimensions of 25.2 × 0.6 arcsec2 on the plane of the sky. The continuum spatial profiles were extremely asymmetrical toward the Sun. However, the continuum-subtracted spatial profiles of the molecular emissions were symmetrical relative to the nucleus, except for C2. The shape of the spatial profiles of the C2 emissions is similar to that one of continuum but is more flattened. So, there are evidences that dust can be an additional source of the C2 radicals in the cometary coma. The main aim of our research was identification of the cometary emissions. Using recent laboratory spectroscopic data we identified newlines of C2 associated with the transitions from high rotational levels in the 4805–4872 Å spectral region. We detected cometary Hα emission as well. Emissions of NH2, H2O+,and C2 (Phillips system) were found in the red spectral windows. Some emission features are still unassigned.  相似文献   

15.
The photodissociation regions located between ionized regions and molecular clouds are studied by using a one-dimensional model where molecular H2 are formed on the dust grains, and destructed by photodissociation. The escape probability method is used for the line transfer. The excitation of infrared emission lines of H2 by UV fluorescence in M17, by shock heating in Orion KL and mainly by UV fluorescence in NGC 2023 are discussed.  相似文献   

16.
We observed the H2CO(110–111) absorption lines and H110α radio recombination lines (RRL) toward 180 NH3 sources using the Nanshan 25-m radio telescope. In our observation, 138 sources were found to have H2CO lines and 36 have H110α RRLs. Among the 138 detected H2CO sources, 38 sources were first detected. The detection rates of H2CO have a better correlation with extinction than with background continuum radiation. Line center velocities of H2CO and NH3 agree well. The line width ratios of H2CO and NH3 are generally larger than unity and are similar to that of 13CO. The correlation between column densities of H2CO and extinction is better than that between NH3 and extinction. These line width relation and column density relation indicate H2CO is distributed on a larger scale than that of NH3, being similar to the regions of 13CO. The abundance ratios between NH3 and H2CO were found to be different in local clouds and other clouds.  相似文献   

17.
We present the results of study of the ionized gas velocity fields in 28 nearby (systemic velocity below 1000 km s?1) dwarf galaxies. The observations were made at the 6-m BTA telescope of the SAO RAS with the scanning Fabry-Perot interferometer in the Hα emission line. We were able to measure regular circular rotation parameters in 25 galaxies. As a rule, rotation velocities measured in HII are in a good agreement with the data on the HI kinematics at the same radii. Three galaxies reveal position angles of the kinematic axis in the HII velocity fields that strongly (tens of degrees) differ from the measurements in neutral hydrogen at large distances from the center or from the orientation of the major axis of optical isophotes. The planes of the gaseous and stellar disks in these galaxies most likely do not coincide. Namely, in DDO99 the gaseous disk is warped beyond the optical radius, and in UGC3672 and UGC8508 the inclination of orbits of gas clouds varies in the inner regions of galaxies. It is possible that the entire ionized gas in UGC8508 rotates in the plane polar to the stellar disk.  相似文献   

18.
Shulman  S. G.  Grinin  V. P. 《Astronomy Letters》2019,45(6):384-395

The behavior of the linear polarization parameters of UX Ori stars during their eclipses by circumstellar dust clouds is studied. A circumstellar disk with a disk wind creating a puffing in the dust sublimation zone is considered. We show that the disk puffing can strongly affect the degree of polarization and color index of the star during its eclipse. A strong wind can change the orientation of the plane of linear polarization. The scattered radiation from a thin disk is polarized perpendicularly to its plane, but the radiation from a disk with a strong wind can be polarized along the disk plane. A situation where the disk-scattered radiation is not polarized in a certain spectral band is possible owing to the disk puffing. There can be different orientations of the linear polarization of the disk radiation in different spectral bands.

  相似文献   

19.
Limb-darkening curves are derived from Pioneer 10 imaging data for Jupiter's STrZ (?18 to ?21° latitude) and SEBn (?5 to ?8° latitude) in red and blue light at phase angles of 12, 23, 34, 109, 120, 127, and 150°. Inhomogeneous scattering models are computed and compared with the data to constrain the vertical structure and the single-scattering phase functions of the belt and the zone in each color. The very high brightness observed at a 150° phase angle seems to require the presence of at lleast a thin layer of reasonably bright and strongly forward-scattering haze particles at pressure levelsof about 100 mbar or less above both belts and zones. Marginally successful models have been constructed in which a moderate optical thickness (τ ≥ 0.5) of haze particles was uniformly distributed in the upper 25 km-amagats of H2. Excellent fits to the data were obtained with models having a thin (optical depths of a few tenths) haze conentraated above most of the gas. Following recent spectrospcopicanalyses, we have placed the main “cloud” layer or layers beneath about 25 km-amagats of H2, although successful fits to our continuum data probably could be achieved also if the clouds were permitted to extend all the way up to the thin haze layer. Similarly, below the haze level our data cannot distinguish between models having two clouds separated by a clear space as suggested by R. E. Danielson and M. G. Tomasko and models with a single extensive diffuse cloud having an H2 abundance of a few kilometer-amagats per scattering mean free path as described by W. D. Cochran. In either case, the relative brightness of the planet at each phase angle primarily serves to constrain the single-scattering phase functions of the Jovian clouds at the corresponding scattering angles. The clouds in these models are characterized by single-scattering phase functions having strong forward peaks and modest backward-scattering peaks, indicating cloud particles with dimensions larger than about 0.6 μm. In our models, a lower single-scattering albedo of the cloud particles in the belt relative to the zone accounts for the contrast between these regions. If an increased abundance of absorbing dust above uniformly bright clouds is used to explain the contrast between belts and zones at visible wavelengths, the limb darkening is steeper than that observed for the SEBn in blue light at small phase angles. The phase integral for the planet calculated for either the belt or the zone model in either color lies in the range 1.2 to 1.3. If a value of 1.25 is used with D.J. Taylor's bolometric geometric albedo of 0.28, the planet emits 2.25 or 1.7 times the energy it absorbs from the Sun if it effective temperature is 134 or 125°K, respectively—roughly as expected from current theories of the cooling of Jupiter's interior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号