首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
During searches for periodicity in very high energy (VHE) gamma ray data, the freedom usually exists to place a trial period anywhere within the spacing between independent periods normally associated with a Fourier transform of data of finite duration. The problem has been previously addressed by Monte Carlo techniques, which are limited by the demands of computing time to small data sets and signal strengths. This letter provides an analytical technique for calculating the oversampling factor for any data set size and any statistical test. The method is illustrated using the Rayleigh statistic, which is widely used in testing for periodicity  相似文献   

2.
In the near future, a new generation of sample return missions (Hayabusa2, OSIRIS‐REx, MMX, etc.) will collect samples from small solar system bodies. To maximize the scientific outcome of laboratory studies and minimize the loss of precious extraterrestrial samples, an analytical sequence from less destructive to more destructive techniques needs to be established. In this work, we present a combined X‐ray and IR microtomography applied to five Itokawa particles and one fragment of the primitive carbonaceous chondrite Paris. We show that this analytical approach is able to provide a 3‐D physical and chemical characterization of individual extraterrestrial particles, using the measurement of their 3‐D structure and porosity, and the detection of mineral and organic phases, and their spatial co‐localization in 3‐D. We propose these techniques as an efficient first step in a multitechnique analytical sequence on microscopic samples collected by space missions.  相似文献   

3.
The formation of galaxy clusters in hierarchically clustering universes is investigated by means of high-resolution N -body simulations. The simulations are performed using a newly developed multimass scheme which combines a PM code with a high-resolution N -body code. Numerical effects resulting from time-stepping and gravitational softening are investigated, as well as the influence of the simulation box size and of the assumed boundary conditions. Special emphasis is laid on the formation process and the influence of various cosmological parameters. Cosmogonies with massive neutrinos are also considered. Differences between clusters in the same cosmological model seem to dominate over differences caused by differing background cosmogony. The cosmological model can alter the time evolution of cluster collapse, but the merging pattern remains fairly similar, e.g. the number of mergers and the mass ratio of mergers. The gross properties of a halo, such as its size and total angular momentum, also evolve in a similar manner for all cosmogonies, and can be described using analytical models. It is shown that the density distribution of a halo shows a characteristic radial dependence which follows a power law with a slope of =1 at small radii and =3 at large radii, independent of the background cosmogony or the considered redshift. The shape of the density profiles follows the generic form proposed by Navarro et al. for all hierarchically clustering scenarios, and retains very little information about the formation process or the cosmological model. Only the central matter concentration of a halo is correlated with the formation time and therefore the corresponding cosmogony. We emphasize the role of non-radial motions of the halo particles in the evolution of the density profile.  相似文献   

4.
The search for life in the solar system requires sub-surface exploration capabilities of extra-terrestrial bodies like the Moon and Mars. To do so different techniques are being developed: from the classical rotary drilling techniques widely used on Earth to more original techniques like ultrasonic drilling. Dual-reciprocating drilling (DRD) is a bio-mimetic drilling principle inspired by the manner wood-wasps drill into wood to lay its eggs. It was proposed as an efficient extra-terrestrial drilling technique requiring low over-head force. To deepen the understanding of this novel drilling technique, DRD has been tested for the first time in planetary regolith simulants. These experiments are reported here. To do so a new test bench was built and is presented. The soil forces on the drill bit are analysed and the final depth reached by the DRD system is compared to the final depth reached by static penetration. The experiments have shown very high levels of slippage (defined here specifically for DRD). The observations of the surface deformations and the importance of slippage lead to the proposal of DRD penetration mechanics in regoliths. Finally a re-evaluation of previous DRD experiments conducted on low compressive strength rocks also show the high levels of slippage during DRD.  相似文献   

5.
In the present paper, an efficient iterative method of arbitrary integer order of convergent ≥2 based on the homotopy continuation techniques for the solution of the initial value problem of space dynamics using the universal Y functions is presented. The method is of dynamic nature in the sense that, ongoing from one iterative scheme to the subsequent one, only additional instruction is needed. Most importantly, the method does not need any prior knowledge of the initial guess. This is a property which avoids the critical situations between divergent to very slow convergent solutions that may exist in other numerical methods which depend on initial guesses. A computational package for digital implementation of the method is given, together with numerical applications for elliptic, hyperbolic, and parabolic orbits. The accuracy of the results for all orbits is O(10–16). (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Using the rectangular equations of motion for the restricted three-body problem a comparison is made of the integration of these equations by the Encke method and by a set of perturbational equations. Each set of differential equations is integrated using Taylor series expansions where the coefficients of the powers of time are determined by recurrence relations. It is shown that for very small perturbations the use of the perturbational equations is more efficient than the use of the Encke method. A discussion is also given of when Cowell's method is more efficient than either of these techniques.  相似文献   

7.
In this contribution, an efficient technique to design direct (i.e., without intermediate flybys) low-energy trajectories in multi-moon systems is presented. The method relies on analytical two-body approximations of trajectories originating from the stable and unstable invariant manifolds of two coupled circular restricted three-body problems. We provide a means to perform very fast and accurate computations of the minimum-cost trajectories between two moons. Eventually, we validate the methodology by comparison with numerical integrations in the three-body problem. Motivated by the growing interest in the robotic exploration of the Jovian system, which has given rise to numerous studies and mission proposals, we apply the method to the design of minimum-cost low-energy direct trajectories between Galilean moons, and the case study is that of Ganymede and Europa.  相似文献   

8.
For computing highly eccentric (e0.9) Earth satellite orbits with special perturbation methods, a comparison is made between different schemes, namely the direct integration of the equations of motion in Cartesian coordinates, changes of the independent variable, use of a time element, stabilization and use of regular elements. A one-step and a multi-step integration are also compared.It is shown that stabilization and regularization procedures are very helpful for non or smoothly perturbed orbits. In practical cases for space research where all perturbations are considered, these procedures are no longer so efficient. The recommended method in these cases is a multi-step integration of the Cartesian coordinates with a change of the independent variable defining an analytical step size regulation. However, the use of a time element and a stabilization procedure for the equations of motion improves the accuracy, except when a small step size is chosen.  相似文献   

9.
Since the time of Newton, astrodynamics has focused on the analytical solution of orbital problems. This was driven by the desire to obtain a theoretical understanding of the motion and the practical desire to be able to produce a computational result, Only with the advent of the computer did numerical integration become a practical consideration for solving dynamical problems. Although computer technology is not yet to the point of being able to provide numerical integration support for all satellite orbits, we are in a transition period which is being driven by the unprecedented increase in computational power, This transition will affect the future of analytical, semi-analytical and numerical artificial satellite theories in a dramatic way, In fact, the role for semi-analytical theories may disappear. During the time of transition, a central site may have the capacity to maintain the orbits using numerical integration, but the user may not have such a capacity or may need results in a more timely manner, One way to provide for this transition need is through the use of some type of satellite ephemeris compression. Through the combined use of a power series and a Fourier series, good quality ephemeris compression has been achieved for 7 day periods, The ephemeris compression requires less than 40 terms and is valid for all eccentricities and inclinations.  相似文献   

10.
In this paper, a combination analytical-numerical integration method for solving the differential equations of a modified set of Lagrange's planetary equations is described. The integration method is an Encke-type method because it involves integrating the deviations between the actual trajectory and a reference trajectory. The reference trajectory is obtained from an analytical solution containing the dominant secular and periodic effects of the gravitational field of the primary body. A set of nonsingular elements is used so that the method will be valid for all circular and elliptical motions. It is shown that the method is an accurate and efficient means of satellite ephemeris generation.This paper was presented at the AIAA/AAS Meeting, Princeton University, August 1969.  相似文献   

11.
The phase-space structure of two families of galactic potentials is approximated with a resonant detuned normal form. The normal form series is obtained by a Lie transform of the series expansion around the minimum of the original Hamiltonian. Attention is focused on the quantitative predictive ability of the normal form. We find analytical expressions for bifurcations of periodic orbits and compare them with other analytical approaches and with numerical results. The predictions are quite reliable even outside the convergence radius of the perturbation and we analyze this result using resummation techniques of asymptotic series.  相似文献   

12.
轨道改进中计算状态转移矩阵的分析方法   总被引:1,自引:0,他引:1  
张强  刘林 《天文学报》1999,40(2):113-121
对当今人卫轨道改进问题,由于力学模型的复杂,精密星历和状态转移矩阵的计算均采用数值方法,这就需要积分两组常微分方程.本文针对状态转移矩阵在定轨中的作用,对定轨弧段不太长的情况,给出了状态转移矩阵的一种分析算法,从而避免数值求解两组常微分方程的问题,并以实际算例证实了这种算法的有效性  相似文献   

13.
A procedure is developed that, in two iterations, solves the hyperbolic Kepler's equation in a very efficient manner, and to an accuracy that proves to be always better than 10–20 (relative truncation error). Earlier work on the elliptic equation has been extended by the development of a new procedure that solves to a maximum relative error of 10–14.  相似文献   

14.

Given the interest in future space missions devoted to the exploration of key moons in the solar system and that may involve libration point orbits, an efficient design strategy for transfers between moons is introduced that leverages the dynamics in these multi-body systems. The moon-to-moon analytical transfer (MMAT) method is introduced, comprised of a general methodology for transfer design between the vicinities of the moons in any given system within the context of the circular restricted three-body problem, useful regardless of the orbital planes in which the moons reside. A simplified model enables analytical constraints to efficiently determine the feasibility of a transfer between two different moons moving in the vicinity of a common planet. In particular, connections between the periodic orbits of such two different moons are achieved. The strategy is applicable for any type of direct transfers that satisfy the analytical constraints. Case studies are presented for the Jovian and Uranian systems. The transition of the transfers into higher-fidelity ephemeris models confirms the validity of the MMAT method as a fast tool to provide possible transfer options between two consecutive moons.

  相似文献   

15.
Book Review     
The aim of this book is to present techniques for the study of motion of solar system objects in highly eccentric orbits. Instead of using the usual anomalies (mean, true, eccentric), the authors define and use a new kind of anomaly, the elliptic anomaly.In this way, it is possible, in a theory using perturbation series expansions, to make the ratio: (accuracy)/(number of needed terms), higher than in the classical techniques. The book consists of six chapters. The first chapter deals with the elliptic anomaly in the two-body problem and the second chapter presents the general technique to construct first-order perturbation theory in elliptic function expansions. The next three chapters deal with applications of the new technique to artificial satellites and asteroids, in highly eccentric orbits. The last chapter describes the basic algorithms of the theory.The tools developed in the book demand the use of computer algebra, which is implemented by means of Mathematica 3.0.The book is well written and the new technique is clearly presented and related to the existing techniques, making it useful to all those who use analytical or semi-analytical methods for the study of highly eccentric motion. Celestial Mechanics at High Eccentricities, Gordon and Breach Publishers, US$95, GBP 59, EUR 79, ISBN 90-5699-212-0  相似文献   

16.
强磁场中相对论电子的共振逆康普顿散射(RICS)是产生伽玛射线的有效机制.以前的工作曾论证,伽玛暴(GRB)的早期伽玛射线辐射可能主要由该机制产生.利用此辐射机制,伽玛暴研究中的一些困惑有可能得到较好的解释.例如,观测统计给出的"Amati关系"的起源,两段式(折断式)幂律谱的形成,特别是其中"死线问题"的解决方案,还有偏振的存在等.这里将重点讨论折断幂律谱形成问题.基于单个电子的RICS谱功率公式,导出了强磁场中大量相对论电子穿过周边低频辐射场时产生的集体RICS辐射谱(RICS谱光度)的简化解析公式,并将它应用于中子星周边几种典型的低频场(如黑体辐射场、幂律辐射场以及热轫致辐射场),以便与实际观测谱形比较.计算表明:在满足匹配条件(即近似共振条件)下,RICS辐射效率很高,其谱形普遍为两段式的幂律谱形式,与周边低频场性质无关.还论证RICS机制可能是伽玛暴、软伽玛重复暴和伽玛射线脉冲星在高能射线波段(硬X射线和伽玛射线)的一个理想的高效辐射机制.  相似文献   

17.
Isolated and non isolated clusters with a mass distribution have been studied by numerical techniques. The rates of escape of stars and of kinetic energy are compared with Hénon's theoretical expressions. Multiple encounters play a very important role in the escape phenomenon, at least for clusters with a small number of stars. This leads to a theoretical underestimate of the rates of escape when the stars have equal masses and to an overestimate when masses are unequal.For non isolated clusters, the tidal field of the Galaxy is responsible for one half of the rate of escape of the stars. The energy of a star escaping because of the tidal effect grown slowly while that of a star escaping after an encounter increases very rapidly. The stars escaping because of the tidal effect leave the cluster in the vicinity of the equilibrium points.Encounters and the tidal field are not efficient enought to explain why very old open clusters are not observed. Other escape mechanisms have to be considered.Very stable subsystems are formed which are not destroyed under the influence of the galactic tide. Separation between stars can be as low as 100 UA.  相似文献   

18.
The LASCO-C3 coronagraph on SOHO, launched in December 1995, has been collecting images of the corona and background star fields in a regular manner since 1996. This instrument contains a number of broadband filters with various passbands in the range between 400 and 1100 nm. The filter used most often has been the Clear filter (400–900 nm) but there are four other filters with about 100 nm passbands that are also used periodically. Preliminary calibration of the C3 optical system was done before flight and a number of techniques that use star intensities or magnitudes and position have been applied during flight. In order to understand the long-term behavior of the C3 instrument, we have recently performed an analysis of LASCO data that examines the observed intensities of a set of moderately bright stars whose spectra is known from 13 color photometry. Using these star spectra and the observed count rates we have derived the photometric calibration factors of the C3 coronagraph for all five color filters with an absolute precision of about ± 7%. Observations with the Clear filter have been used to look for long-term trends in the instrument sensitivity. The observations indicate a very slight decrease in the instrument sensitivity of about 3.5% over the 8 years studied here.  相似文献   

19.
A model for planetary precession is investigated using analytical and numerical techniques. A Hamiltonian function governing the model is derived in terms of action-angle Andoyer-Déprit variables under the assumption of equatorial symmetry. As a first approximation a simplified Hamiltonian with zero-eccentricity is considered and stability estimates are derived using KAM theory. A validation of the analytical results is performed computing Poincaré surfaces of section for the circular and elliptical model. We also investigate the role of the eccentricity and its connection with the appearance of resonances. Special attention is devoted to the particular case of the Earth–Moon system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
This paper investigates a method for optimizing multi-rendezvous low-thrust trajectories using indirect methods. An efficient technique, labeled costate transforming, is proposed to optimize multiple trajectory legs simultaneously rather than optimizing each trajectory leg individually. Complex inner-point constraints and a large number of free variables are one main challenge in optimizing multi-leg transfers via shooting algorithms. Such a difficulty is reduced by first optimizing each trajectory leg individually. The results may be, next, utilized as an initial guess in the simultaneous optimization of multiple trajectory legs. In this paper, the limitations of similar techniques in previous research is surpassed and a homotopic approach is employed to improve the convergence efficiency of the shooting process in multi-rendezvous low-thrust trajectory optimization. Numerical examples demonstrate that newly introduced techniques are valid and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号