首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recent sediments from an oligotrophic lake (Loch Clair) having uniform organic input for 2000 yr show changes in lipid abundance and composition, with increasing depth, attributed to diagenesis. Stability of free lipids decreases in the order n-alkanes, alkan-2-ones, sterols, n-alkanoic acids, n-alkanols, n-alkenoic acids. Diagenetic loss of shorter-chain homologues is complete within 400 yr. Stabilisation of bound relative to free lipids increases the proportion of the former with sediment age and reduces loss of shorter-chain bound homologues.In an eutrophic lake (Cross Mere), shorter-chain free and bound sedimentary lipids show increased abundance compared with Loch Clair. The relative importance of higher input of shorter-chain lipids derived from aquatic detritus, and slower initial diagenesis due to the anoxic hypolimnion, as causative factors for this difference between lake types cannot yet be assessed.  相似文献   

2.
Peats in a sediment core from Ruoergai bog, which has a cold and moist plateau climate with major source input from herbaceous plants, have been studied by GC–MS in order to understand the composition and diagenetic processes of lipids in this depositional environment. Long chain components (C21–C35) predominate in the n-alkanes, n-alk-1-enes, n-fatty acids, n-alkan-2-ones and n-alkanols with a maximum of C31, C27, C22 or C24, C23 or C25 and C22, respectively. A herbaceous origin for these long chain compounds is suggested, and this is supported by their stable carbon isotopic compositions. Diterpenoid hydrocarbons with abietane, pimarane and kaurane skeletons, some of which have not been reported often in modern sediments, are prominent and are derived from higher plants. Several triterpenoid ketones and alcohols with oleanane or lupane skeletons, and a series of des-A-triterpenoid hydrocarbons which have not been reported often in modern sediments are also present, and are assigned to a higher plant source. Hopanoids, including their alkanes, alkenes, ketones, alcohols and esters, are abundant and of bacterial origin. Steroid ketones and alkanols are dominated by C29 homologues. C28 and C29 steroids are derived mainly from higher plants, whereas the C27 component is assigned to a microbial source. The presence of short-chain n-alkanes with no odd-even carbon predominance, bacterially derived fatty acids (C14, C15, iso- and unsaturated acids), n-alkan-2-ones, des-A-triterpenoid hydrocarbons, hopanoids and some steroid ketones indicate that intense microbial reworking of the organic matter has taken place in this depositional environment. The chemical and biochemical conversions of some cyclic alkenes to alkanes, such as tricyclic diterpenoids, tetracyclic terpenoids and steroid ketones, are also evident with depth. The dominance of C20 components in the diterpenoid hydrocarbons may reflect an oxidizing or reducing depositional condition.  相似文献   

3.
The most widely accepted origin of n-alkan-2-ones in peats is the microbial oxidation of the related n-alkanes and/or oxidative decarboxylation of fatty acids derived from plant input. The distributions of n-alkanes and n-alkan-2-ones in 48 samples from the Roñanzas 6000 cal. yr BP peat bog profile (N Spain) do not justify a single source. The n-alkan-2-ones typically dominate the n-alkanes, maximizing at C19 or C25/C27, whereas the n-alkanes maximized either at C23 or at C31/C33. The averaged δ13C values of the n-alkanes ranged from −32.3‰ to −33.1‰, but those of the n-alkan-2-ones were consistently higher (−29.2‰ to −29.9‰), suggesting a different, probably bacterial, source for the ketones.  相似文献   

4.
《Applied Geochemistry》2005,20(3):553-568
Seven coal and carbonaceous mudstone samples were collected from outcropping Jurassic coal beds, on the margin of the Dingxi Basin, Northwestern China. The n-alkane distributions in all of the samples are characterised by high concentrations of the C19–C29 homologues, and very much lower amounts outside of this range. C23 or C24 are usually the most abundant n-alkanes. Straight chain n-alkanes from C23 to C29 show moderate odd-to-even C number predominances (CPI range: 1.26–2.70). Long-chain acyclic n-alkan-2-ones, n-alkan-3-ones and n-alkan-4-ones ranging from C15 to C33 with moderate odd-to-even C number predominances, were detected together with one isoprenoid methyl ketone (6,10,14-trimethylpentadecan-2-one) in all of the samples. The C number distributions of the three series of alkanones show a similar distribution to that of the n-alkanes, but the correspondence is not sufficient to substantiate a product–precursor relationship. It can be concluded that the n-alkan-2-ones are a mixture of the products of microbially-mediated β-oxidation of corresponding n-alkanes in the sediments and from the microbial oxidation of higher plant-derived n-alkanes prior to incorporation in the sediments. The n-alkan-3-ones and n-alkan-4-ones were formed from microbially mediated oxidation of the corresponding n-alkanes in the γ and δ positions, respectively. Generation of the ketones from higher plant n-fatty alcohols and n-alkanoic acids could be a possible way to form some of the ketones observed, but it can only play a minor role in the samples analysed.  相似文献   

5.
Lipid extracts from a 61.7-cm-long subtropical stalagmite in southern China, spanning the period of ca. 10,000–21,000 yr ago as constrained by U–Th dating, were analyzed using gas chromatography–mass spectrometry. The higher plants and microorganisms in the overlying soils contribute a proportion of n-alkanes identified in the stalagmite. The occurrence of LMW (lower molecular weight) n-alkanols and n-alkan-2-ones in the stalagmite was mainly related to the soil microorganisms. We suggest that HMW (higher molecular weight) n-alkanols and n-alkan-2-ones identified in the stalagmite originate from soil organics and reflect input from contemporary vegetation. Shifts in the ratio of LMW to HMW n-alkanols or n-alkan-2-ones indicative of the variation of soil ecosystems (e.g., microbial degradation of organic matter and/or the relative abundance of soil microorganisms to higher plants) are comparable with the subtropical alkenone-SST (sea surface temperature) record of the same period. The similar trends seen in the δ13C data and the lipid parameters in this stalagmite imply that the overlying soil ecosystem response to climate might be responsible for the variation of δ13C values.  相似文献   

6.
Major lipid classes isolated from 3 sections of the sediment profile of Upton Broad, a shallow lake formed about 500 yr ago, were correlated with input and with changes attributable to early diagenesis. Surficial sediment contains lipids characteristics of the known recent algal and microbial input; preservation of chlorophyll pigments and absence of appropriate markers suggest that diagenesis is minimal. Older deposits from the eutrophic phase of the lake's history contain higher levels of bacterial lipids and diagenetic products. The earliest sediment contains lipids characteristic of terrigenous input subjected to more extensive diagenesis than the younger sediment. Recognition of early diagenesis in anoxic sediment suggests that distributions of the shorter-chain homologous free n-alkanes, alkanols and alkanoic acids result from microbial synthesis using material initially deposited at the sediment surface, rather than partial preservation of the lipids of primary source organisms.  相似文献   

7.
A sample of the sediment-water column interface which lies on the continental shelf under the Peru upwelling regime, has been examined for fatty acids, fatty alcohols, ketones and hydrocarbons. Fatty acids were the most abundant compound class, ranging from C12-C24, with 16:0 as the major component (765.5 μg/g dry sediment). The alcohols were dominated by 3,7,11,15-tetramethylhexadeca-2-en-ol (phytol), with even-chain n-alcohols in the range C14-C20. The ketones consisted of C37-C39 di- and tri-unsaturated alken-2-ones and alken-3-ones. Both alkanes and alkenes were present in the hydrocarbon fraction; the alkanes ranging from C13 — C20 and comprising both straight chain and isoprenoid compounds; the alkenes consisting of isomeric pairs of C25 branched trienes and tetraenes. The data indicate that the organic content has been contributed very largely from marine sources (probably mainly from phytoplankton and bacteria), showing little terrigenous influence. The presence of labile compounds such as polyunsaturated fatty acids (with two to six double bonds), implies that the sediment has undergone very little diagenetic alteration, and the lipids are probably largely unchanged from the state in which they actually reached the sediment. They may therefore serve as a useful baseline in assessing diagenesis in older sediments, where diagenetic transformations are more advanced.  相似文献   

8.
Lipid biomarkers from a peat plateau profile from the Northeast European Russian Arctic were analyzed. The peat originated as a wet fen ca. 9 ka BP and developed into a peat bog after the onset of permafrost ca. 2.5 ka BP. The distributions and abundances of n-alkanols, n-alkanoic acids, n-alkanes, n-alkan-2-ones and sterols were determined to study the effect of degradation on their paleoclimate proxy information. Plant macrofossil analysis was also used in combination with the lipid distributions. The n-alkanol and n-alkanoic acid distributions in the upper part of the sequence generally correspond to compositions expected from plant macrofossil assemblages. Their carbon preference index (CPI) values increase with depth and age, whereas those of the n-alkanes decrease. The different CPI patterns suggest that n-alkanoic acids and n-alkanols deeper in the sequence may be produced during humification through alteration of other lipids. Excursions in the n-alkanoic acid content also suggest an important contribution of invasive roots to the lipid biomarker composition. The CPIs associated with these compounds show that under permafrost conditions organic material from Sphagnum is better preserved than material from vascular plants. Increasing stanol/stenol ratio values and decreasing n-alkane CPI values indicate progressive degradation of organic matter (OM) with depth. The n-alkan-2-one/n-alkane and n-alkan-2-one/n-alkanoic acid ratios were shown to be useful proxies that can reflect the degree of OM preservation and suggest that both microbial oxidation of n-alkanes and decarboxylation of n-alkanoic acids produce n-alkan-2-ones in this peat sequence.  相似文献   

9.
Shallow surface sediment samples from the Mesopotamian marshlands of Iraq were collected and analyzed to determine the distribution, concentrations and sources of aliphatic lipid compounds (n-alkanes, n-alkanols, n-alkanoic acids, and methyl n-alkanoates) and molecular markers of petroleum in these wetlands. The sediments were collected using a stainless steel sediment corer, dried, extracted with a dichloromethane/methanol mixture and then analyzed by gas chromatography-mass spectrometry (GC–MS). The aliphatic lipid compounds included n-alkanes, n-alkanoic acids, n-alkanols and methyl n-alkanoates with concentrations ranged from 6.8 to 31.1 μg/g, 4.1 to 5.0 μg/g, 5.9 to 7.7 μg/g and from 0.3 to 5.9 μg/g, respectively. The major sources of aliphatic lipids were natural from waxes of higher plants (24–30%) and microbial residues (42–30%), with a significant contribution from anthropogenic sources (27–30%, petroleum), based on the organic geochemical parameters and indices. Further studies are needed to characterize the rate, accumulation and transformation of various organic matter sources before and after re-flooding of these wetlands.  相似文献   

10.
A Pliocene oil shale (Pula, Hungary), a C3 plant Triticum aestivum and a C4 plant Zea mays were compared using isotopic composition of bulk organic matter, along with distributions and individual carbon isotope ratios of n-alkanes from organic extracts. The microalga Botryococcus braunii (A race) was thus shown to be the main source of the predominant 27, 29 and 31 n-alkanes of Pula sediment Therefore, the dominance of odd carbon-numbered n-alkanes in the range C2535 in extracts from immature sediments shall not be systematically assigned to higher plant contribution but algal input is also possible. In fact, the long chain n-alkanes with an odd predominance previously observed in extracts of various immature sediments are likely to be derived at least partially, from algae.  相似文献   

11.
We determined the distribution of lipids (n-alkanes and n-alkan-2-ones) in present-day peat-forming plants in the Roñanzas Bog in northern Spain. Consistent with the observation of others, most Sphagnum (moss) species alkanes maximized at C23, whereas the other plants maximized at higher molecular weight (C27 to C31). We show for the first time that plants other than seagrass and Sphagnum moss contain n-alkan-2-ones. Almost all the species analysed showed an n-alkan-2-one distribution between C21 and C31 with an odd/even predominance, maximizing at C27 or C29, except ferns, which maximized at lower molecular weight (C21-C23). We also observed that microbial degradation can be a major contributor to the n-alkan-2-one distribution in sediments as opposed to a direct input of ketones from plants.  相似文献   

12.
A detailed study has been made of the solvent extractable monocarboxylic, dicarboxylic and hydroxylated fatty acids and n-alkanes in a surface intertidal sediment, and the distributions compared to microorganisms cultured from the sediment. Diatoms are shown to contribute most of the monocarboxylic acids, particularly the significant amounts of polyunsaturated acids present, and a small proportion of the n-alkanes. Bacteria contribute between 11 and 14% of the monocarboxylic acids and markers for this, including trans-monounsaturated acids, are proposed. Detritus from the sea-grass Zostera muelleri is a major source of the α-hydroxy-, ω-hydroxy and α,ω-dicarboxylic acids in the sediment and a minor contributor of n-alkanes and long-chain fatty acids.  相似文献   

13.
The basin-scale spatial variability in lipid biomarker proxies in lacustrine sediments, which are established tools for studying continental environmental change, has rarely been examined. It is often implicitly assumed that a lake sediment core provides an average integral of catchment sources. Here we evaluated the distribution of lipid biomarkers in a modern ecosystem and compared it with the sedimentary record. We analyzed lipid biomarkers in terrestrial and aquatic organisms and in lake surface sediments from 17 locations within the saline–alkaline Lonar crater lake in central India. Terrestrial vegetation and lake surface sediments were characterized by relatively high average chain length (ACL) index values (29.6–32.8) of leaf wax n-alkanes, consistent with suggestions that plants in drier and warmer climates produce longer chain alkyl lipids than plants in cooler and humid areas. A heterogeneous spatial distribution of ACL values in lake surface sediments was found: at locations away from the shore, the values were highest (31 or more), possibly indicating different sources and/or transport of terrestrial biomarkers. In floating, benthic microbial mats and surface sediment, n-heptadecane, carotenoids, diploptene, phytol and tetrahymanol occurred in large amounts. Interestingly, these biomarkers of a unique bacterial community were found in substantially higher concentrations in nearshore sediment samples. We suggest that human influence and subsequent nutrient supply resulted in increased primary productivity, leading to an unusually high concentration of tetrahymanol in the nearshore sediments.In summary, the data showed that substantial heterogeneity existed within the lake, but leaf wax n-alkanes in a core from the center of the lake represented an integral of catchment conditions. However, lake level fluctuation may potentially affect aquatic lipid biomarker distributions in lacustrine sediments, in addition to source changes.  相似文献   

14.
Surface sediments from the subtropical Pearl River estuary and adjacent South China Sea were investigated by molecular organic geochemical methods to determine the composition, distribution and origin of extractable lipids (n-alkanes, n-alkanols and sterols). The absolute and organic C normalized concentrations of total alkane, n-alkanol, and sterol ranged from 0.16 to 2.67 μg g−1 and 0.9 to 12.3 μg g−1 OC, 24.4 to 427.3 ng g−1 and 63.2 to 1966.7 ng g−1 OC, and 9.0 to 493.5 ng g−1 and 58.4 to 1042.4 ng g−1 OC, respectively. The spatial distributions of these biomarkers indicated that terrestrial-derived molecular biomarkers such as long-chain n-alkanes, n-alkanols and plant-derived sterols were higher at the river mouth and along the coastline, suggesting that a higher proportion of terrestrial particulate organic matter was deposited there. Relatively lower amounts of marine-derived biomarkers such as short-chain n-alkanes, algal sterols at the river mouth reflected the lower primary productivity due to high turbidity. The spatial patterns of these biomarkers were partially related to the estuarine processes and conditions, evidencing an increased terrestrial signal from the Pearl River mouth to the inner estuary, and enhanced marine conditions further offshore.  相似文献   

15.
Studies on long-chain n-alkan-2-ones from lake sediments remain sparse. In this study, we present an n-alkan-2-one record from Qionghai Lake, southwest China, to assess the paleoclimate significance of variations in their compositions. A homologous series of n-alkan-2-ones ranging from C21 to C35 were identified, with maximum concentrations of the C29 or C31 chain lengths and a strong odd-over-even predominance. This type of n-alkan-2-one is considered to derive mainly from microbial oxidation of the corresponding n-alkanes, and partial inputs from plants. The n-alkan-2-one-derived average chain length (ACL) and carbon preference index (CPI) values changed significantly over the past 28k cal a bp , consistent with the sediment grain size and n-alkane proxies from the same core. Generally, the high CPI27-33-ket and low ACL27-33-ket values indicated cold and dry climates such as for the Last Glacial Maximum (23.2–19.7k cal a bp ), Heinrich 1 event (17.6–15.6k cal a bp ) and Younger Dryas (12.8–11.6k cal a bp ), but low CPI27-33-ket and high ACL27-33-ket values denoted a warm and humid Holocene Climatic Optimum (7.0–4.3k cal a bp ). Therefore, n-alkan-2-ones have great paleoclimatic potential and can be applied together with other biomarkers to reconstruct a reliable paleoclimate record in lake sediments.  相似文献   

16.
The vertical distribution of terrestrial and phytoplankton biomarker compounds in a sediment core from the coastal estuarine zone of the Guadiana river (southwest border between Portugal and Spain) was determined by gas chromatography–mass spectrometry. Significant downcore fluctuations were observed in the patterns of the most abundant alkyl series (n-alkanes and n-fatty acids), as well as in several biomarker ratios. In addition, a specific contribution from conifers is reflected in the presence of a resin acid series that first appears 6500 years BP. The observed changes in the lipid assemblage within the Holocene suggest recent variations in the planktonic and terrigenous supply, which are attributed mainly to the evolution of the circulation pattern in the estuary and to the alteration of vegetation cover within the Guadiana drainage basin. Our data suggest that on a 103–104 year time-scale, little or no diagenetic change occurred with respect to the compounds in question.  相似文献   

17.
To determine the degree of hydrocarbon contamination and the contribution of local petroleum industries to contaminant loadings in sediments from the Beiluohe River, China, 12 surface sediment samples were collected for geochemical analysis in 2005. Sediment samples were extracted by organic solvents, separated by silica gel column chromatography and the profiles of n-alkanes, biomarkers and polycyclic aromatic hydrocarbons (PAHs) in sediments were analyzed by gas chromatography with flame ionization detector and gas chromatography/mass spectroscopy. Concentrations of total hydrocarbons in the sediments varied from 12.1 to 3,761.5 μg g−1 dry wt, indicating that most sediments in Beiluohe River was only slightly to moderately contaminated by hydrocarbons. Concentrations of PAHs for six samples (sum of 16 isomers) varied from 17.7 to 407.7 ng g−1 dry wt and at present low levels of PAHs did not cause adverse biological effects in Beiluohe River sedimentary environment. PAH compositions, n-alkanes and biomarker profiles all suggested that there were different sources of contaminations in studied areas. n-Alkanes reflect two distinct sources: a fossil n-alkane series from crude oil at sites S40, S43, S87 and plantwax n-alkanes at sites S39 and S45. Judged by their PAH ratios, the sediments at site S15 were pyrolytic, sediments at S17 and S43 were petrogenic, and sediments at S39, S40 and S64 had a mixture source of pyrolytic and petrogenic.  相似文献   

18.
Lake Kivu is a gas-charged East African rift lake with currently anoxic bottom water. The extractable compounds and residual organic matter of a short sediment core have δ13C values typical of lacustrine microbial detritus. The total extracts consist primarily of polar compounds such as n-alkanoic acids, hydroxyalkanoic acids, triterpenoids, steroids and monosaccharides, with minor amounts of n-alkanes and n-alkanols. These tracer compounds and δ13C values indicate that the organic matter in the surficial and deeper sedimentary record was dominated by bacterial sources. The sapropelic sediment between these horizons contains organic matter from primarily algal with lesser bacterial input. Terrestrial organic markers are minor in all samples. The major fractions of the compounds in the total extracts were oxidized in the upper water column prior to transit through the anoxic bottom water to sedimentary deposition. The sapropelic horizon may reflect lake water turnover with ventilation or hydrothermal activity and consequently increased algal blooms.  相似文献   

19.
Herein, lipid biomarker analysis is applied to surface sediments from the southeastern Niger Delta region for the quantitative determination of aliphatic lipids, steroids and triterpenoids in order to differentiate between natural (autochthonous vs. allochthonous) and anthropogenic organic matter (OM) inputs to this deltaic environment. This ecosystem, composed of the Cross, Great Kwa and Calabar Rivers, is receiving new attention due to increased human and industrial development activities and the potential effects of these activities impacting its environmental health. While the presence of low molecular weight n-alkanes (<C22) and the fossil biomarkers pristane and phytane in all samples, are indicative of a minor petroleum related input, the total extractable organic component of the surface sediments of these rivers remains predominantly of a natural origin as characterized by the variety and predominance of lipid classes that are mainly derived from the epicuticular waxes of vascular plants and include n-alkanes, n-alkanols, n-alkan-2-ones, n-alkanoic acids, steroids and triterpenoids. In addition, recent OM inputs from microorganisms are indicated by the presence of lower molecular weight n-alkanoic acids (Cmax = 16), while the major triterpenoids of the sediments, taraxerol and friedelin, and the major sterol, sitosterol, indicate recent OM inputs from vascular plants. Plankton-derived sterols, such as fucosterol and dinosterol, are also found in sediments from the Cross and Great Kwa Rivers and likely originate from autochthonous primary productivity. Furthermore, the coprosterols coprostanol and 24-ethylcoprostanol are present in most samples and indicate measurable anthropogenic contributions from domestic untreated sewage inputs and agricultural run-off, respectively. Of the three rivers studied, the Cross River system was excessively influenced by human and industrial development activities, including drivers such as urbanization and population center growth, land-use change to support agricultural production and animal husbandry, and petroleum exploration and production. These influences were found to be regionally specific as controlled by point sources of pollution based on the relative distributions measured and on the fact that the molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.  相似文献   

20.
In response to the lack of studies focussing on the residence time of molecular biomarkers in soils, the lipid content of three soil profiles from the French Massif Central with different land use history were examined. The free neutral lipid content of two reference soil profiles developed under grassland and forest vegetation, and of a former grassland soil converted to forest about 60 years ago, was analysed using gas chromatography–mass spectrometry (GC–MS). Wax esters as well as the ratio of major homologues of n-alkanes and n-alkan-2-ones could be used to characterise the overlying vegetation in the reference forest and grassland soil profiles, but failed to distinguish the respective grassland and forest contributions to the profile of the soil that had changed use. For n-alkanes and n-alkan-2-ones, the failure might be attributed either to mixing of the molecular patterns inherited from the former and current plant cover, whereas for compounds such as wax esters simple degradation is likely to be involved. Conversely, iso- and anteiso-C15:0 fatty acid methyl esters (FAMEs; of bacterial origin), steroids (tracing cattle faecal contamination), tricyclic diterpenoids and their oxygenated derivatives, as well as methoxyserratenes (inherited from Pinaceae) and triterpenyl acetates (specific to the Asteraceae), proved to be effective in distinguishing current land use for the reference soil profiles and for the converted soil. The persistence of these compounds in the changed use soil allowed us to estimate their residence time in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号