首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sample schemes used in geostatistical surveys must be suitable for both variogram estimation and kriging. Previously schemes have been optimized for one of these steps in isolation. Ordinary kriging generally requires the sampling locations to be evenly dispersed over the region. Variogram estimation requires a more irregular pattern of sampling locations since comparisons must be made between measurements separated by all lags up to and beyond the range of spatial correlation. Previous studies have not considered how to combine these optimized schemes into a single survey and how to decide what proportion of sampling effort should be devoted to variogram estimation and what proportion devoted to kriging An expression for the total error in a geostatistical survey accounting for uncertainty due to both ordinary kriging and variogram uncertainty is derived. In the same manner as the kriging variance, this expression is a function of the variogram but not of the sampled response data. If a particular variogram is assumed the total error in a geostatistical survey may be estimated prior to sampling. We can therefore design an optimal sample scheme for the combined processes of variogram estimation and ordinary kriging by minimizing this expression. The minimization is achieved by spatial simulated annealing. The resulting sample schemes ensure that the region is fairly evenly covered but include some close pairs to analyse the spatial correlation over short distances. The form of these optimal sample schemes is sensitive to the assumed variogram. Therefore a Bayesian approach is adopted where, rather than assuming a single variogram, we minimize the expected total error over a distribution of plausible variograms. This is computationally expensive so a strategy is suggested to reduce the number of computations required  相似文献   

2.
Coregionalization analysis has been presented as a method of multi-scale analysis for multivariate spatial data. Despite an increasing use of this method in environmental and earth sciences, the uncertainty associated with the estimation of parameters in coregionalization analysis (e.g., sills and functions of sills) is potentially high and has not yet been characterized. This article aims to discuss the theory underlying coregionalization analysis and assess the robustness and limits of the method. A theoretical framework is developed to calculate the ergodic and fluctuation variance-covariance matrices of least-squares estimators of sills in the linear model of coregionalization. To adjust for the positive semidefiniteness constraint on estimated coregionalization matrices, a confidence interval estimation procedure for sills and functions of sills is presented. Thereafter, the relative importance of uncertainty measures (bias and variance) for sills and structural coefficients of correlation and determination is assessed under different scenarios to identify factors controlling their uncertainty. Our results show that the sampling grid density, the choice of the least-squares estimator of sills, the positive semidefiniteness constraint, the presence of scale dependence in the correlations, and the number and range of variogram models, all affect the level of uncertainty, sometimes through multiple interactions. The asymptotic properties of variogram model parameter estimators in a bounded sampling domain impose a theoretical limit to their accuracy and precision. Because of this limit, the uncertainty was found to be high for several scenarios, especially with three variogram models, and was often more dependent on the ratio of variogram range to domain extent than on the sampling grid density. In practice, in the coregionalization analysis of a real dataset, the circular requirement for sill estimates in the calculation of uncertainty measures makes the quantification of uncertainty very problematic, if not impossible. The use of coregionalization analysis must be made with due knowledge of the uncertainty levels and limits of the method.  相似文献   

3.
The Second-Order Stationary Universal Kriging Model Revisited   总被引:3,自引:0,他引:3  
Universal kriging originally was developed for problems of spatial interpolation if a drift seemed to be justified to model the experimental data. But its use has been questioned in relation to the bias of the estimated underlying variogram (variogram of the residuals), and furthermore universal kriging came to be considered an old-fashioned method after the theory of intrinsic random functions was developed. In this paper the model is reexamined together with methods for handling problems in the inference of parameters. The efficiency of the inference of covariance parameters is shown in terms of bias, variance, and mean square error of the sampling distribution obtained by Monte Carlo simulation for three different estimators (maximum likelihood, bias corrected maximum likelihood, and restricted maximum likelihood). It is shown that unbiased estimates for the covariance parameters may be obtained but if the number of samples is small there can be no guarantee of good estimates (estimates close to the true value) because the sampling variance usually is large. This problem is not specific to the universal kriging model but rather arises in any model where parameters are inferred from experimental data. The validity of the estimates may be evaluated statistically as a risk function as is shown in this paper.  相似文献   

4.
When concerned with spatial data, it is not unusual to observe a nonstationarity of the mean. This nonstationarity may be modeled through linear models and the fitting of variograms or covariance functions performed on residuals. Although it usually is accepted by authors that a bias is present if residuals are used, its importance is rarely assessed. In this paper, an expression of the variogram and the covariance function is developed to determine the expected bias. It is shown that the magnitude of the bias depends on the sampling configuration, the importance of the dependence between observations, the number of parameters used to model the mean, and the number of data. The applications of the expression are twofold. The first one is to evaluate a priori the importance of the bias which is expected when a residuals-based variogram model is used for a given configuration and a hypothetical data dependence. The second one is to extend the weighted least-squares method to fit the variogram and to obtain an unbiased estimate of the variogram. Two case studies show that the bias can be negligible or larger than 20%. The residual-based sample variogram underestimates the total variance of the process but the nugget variance may be overestimated.  相似文献   

5.
Highly Robust Variogram Estimation   总被引:5,自引:0,他引:5  
The classical variogram estimator proposed by Matheron is not robust against outliers in the data, nor is it enough to make simple modifications such as the ones proposed by Cressie and Hawkins in order to achieve robustness. This paper proposes and studies a variogram estimator based on a highly robust estimator of scale. The robustness properties of these three estimators are analyzed and compared. Simulations with various amounts of outliers in the data are carried out. The results show that the highly robust variogram estimator improves the estimation significantly.  相似文献   

6.
Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators: kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics to spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.  相似文献   

7.
In many circumstances involving heat and mass transfer issues, it is considered impractical to measure the input flux and the resulting state distribution in the domain. Therefore, the need to develop techniques to provide solutions for such problems and estimate the inverse mass flux becomes imperative. Adaptive state estimator (ASE) is increasingly becoming a popular inverse estimation technique which resolves inverse problems by incorporating the semi-Markovian concept into a Bayesian estimation technique, thereby developing an inverse input and state estimator consisting of a bank of parallel adaptively weighted Kalman filters. The ASE is particularly designed for a system that encompasses independent unknowns and /or random switching of input and measurement biases. The present study describes the scheme to estimate the groundwater input contaminant flux and its transient distribution in a conjectural two-dimensional aquifer by means of ASE, which in particular is because of its unique ability to efficiently handle the process noise giving an estimation of keeping the relative error range within 10% in 2-dimensional problems. Numerical simulation results show that the proposed estimator presents decent estimation performance for both smoothly and abruptly varying input flux scenarios. Results also show that ASE enjoys a better estimation performance than its competitor, Recursive Least Square Estimator (RLSE) due to its larger error tolerance in greater process noise regimes. ASE’s inherent deficiency of being slower than the RLSE, resulting from the complexity of algorithm, was also noticed. The chosen input scenarios are tested to calculate the effect of input area and both estimators show improved results with an increase in input flux area especially as sensors are moved closer to the assumed input location.  相似文献   

8.
Coregionalization analysis has been presented as a method of multi-scale analysis for multivariate spatial data. Despite an increasing use of this method in environmental and earth sciences, the uncertainty associated with the estimation of parameters in coregionalization analysis (e.g., sills and functions of sills) is potentially high and has not yet been characterized. This article aims to discuss the theory underlying coregionalization analysis and assess the robustness and limits of the method. A theoretical framework is developed to calculate the ergodic and fluctuation variance-covariance matrices of least-squares estimators of sills in the linear model of coregionalization. To adjust for the positive semidefiniteness constraint on estimated coregionalization matrices, a confidence interval estimation procedure for sills and functions of sills is presented. Thereafter, the relative importance of uncertainty measures (bias and variance) for sills and structural coefficients of correlation and determination is assessed under different scenarios to identify factors controlling their uncertainty. Our results show that the sampling grid density, the choice of the least-squares estimator of sills, the positive semidefiniteness constraint, the presence of scale dependence in the correlations, and the number and range of variogram models, all affect the level of uncertainty, sometimes through multiple interactions. The asymptotic properties of variogram model parameter estimators in a bounded sampling domain impose a theoretical limit to their accuracy and precision. Because of this limit, the uncertainty was found to be high for several scenarios, especially with three variogram models, and was often more dependent on the ratio of variogram range to domain extent than on the sampling grid density. In practice, in the coregionalization analysis of a real dataset, the circular requirement for sill estimates in the calculation of uncertainty measures makes the quantification of uncertainty very problematic, if not impossible. The use of coregionalization analysis must be made with due knowledge of the uncertainty levels and limits of the method.  相似文献   

9.
Geostatistics has traditionally used a probabilistic framework, one in which expected values or ensemble averages are of primary importance. The less familiar deterministic framework views geostatistical problems in terms of spatial integrals. This paper outlines the two frameworks and examines the issue of which spatial continuity measure, the covarianceC (h) or the variogram (h), is appropriate for each framework. AlthoughC (h) and (h) were defined originally in terms of spatial integrals, the convenience of probabilistic notation made the expected value definitions more common. These now classical expected value definitions entail a linear relationship betweenC (h) and (h); the spatial integral definitions do not. In a probabilistic framework, where available sample information is extrapolated to domains other than the one which was sampled, the expected value definitions are appropriate; furthermore, within a probabilistic framework, reasons exist for preferring the variogram to the covariance function. In a deterministic framework, where available sample information is interpolated within the same domain, the spatial integral definitions are appropriate and no reasons are known for preferring the variogram. A case study on a Wiener-Levy process demonstrates differences between the two frameworks and shows that, for most estimation problems, the deterministic viewpoint is more appropriate. Several case studies on real data sets reveal that the sample covariance function reflects the character of spatial continuity better than the sample variogram. From both theoretical and practical considerations, clearly for most geostatistical problems, direct estimation of the covariance is better than the traditional variogram approach.This paper was presented at MGUS 87 Conference, Redwood City, California, 14 April 1987.  相似文献   

10.
In many circumstances involving heat and mass transfer issues,it is considered impractical to measure the input flux and the resulting state distribution in the domain.Therefore,the need to develop techniques to provide solutions for such problems and estimate the inverse mass flux becomes imperative.Adaptive state estimator(ASE)is increasingly becoming a popular inverse estimation technique which resolves inverse problems by incorporating the semi-Markovian concept into a Bayesian estimation technique,thereby developing an inverse input and state estimator consisting of a bank of parallel adaptively weighted Kalman filters.The ASE is particularly designed for a system that encompasses independent unknowns and/or random switching of input and measurement biases.The present study describes the scheme to estimate the groundwater input contaminant flux and its transient distribution in a conjectural two-dimensional aquifer by means of ASE,which in particular is because of its unique ability to efficiently handle the process noise giving an estimation of keeping the relative error range within 10%in 2-dimensional problems.Numerical simulation results show that the proposed estimator presents decent estimation performance for both smoothly and abruptly varying input flux scenarios.Results also show that ASE enjoys a better estimation performance than its competitor,Recursive Least Square Estimator(RLSE)due to its larger error tolerance in greater process noise regimes.ASE's inherent deficiency of being slower than the RLSE,resulting from the complexity of algorithm,was also noticed.The chosen input scenarios are tested to calculate the effect of input area and both estimators show improved results with an increase in input flux area especially as sensors are moved closer to the assumed input location.  相似文献   

11.
In the present paper, we propose a new method for the estimation of the variogram, which combines robustness with efficiency under intrinsic stationary geostatistical processes. The method starts by using a robust estimator to obtain discrete estimates of the variogram and control atypical observations that may exist. When the number of points used in the fit of a model is the same as the number of parameters, ordinary least squares and generalized least squares are asymptotically equivalent. Therefore, the next step is to fit the variogram by ordinary least squares, using just a few discrete estimates. The procedure is then repeated several times with different subsets of points and this produces a sequence of variogram estimates. The final estimate is the median of the multiple estimates of the variogram parameters. The suggested estimator will be called multiple variograms estimator. This procedure assures a global robust estimator, which is more efficient than other robust proposals. Under the assumed dependence structure, we prove that the multiple variograms estimator is consistent and asymptotically normally distributed. A simulation study confirms that the new method has several advantages when compared with other current methods.  相似文献   

12.
Variograms of hydrologic characteristics are usually obtained by estimating the experimental variogram for distinct lag classes by commonly used estimators and fitting a suitable function to these estimates. However, these estimators may fail the conditionally positive-definite property and the better results for the statistics of cross-validation, which are two essential conditions for choosing a valid variogram model. To satisfy these two conditions, a multi-objective bilevel programming estimator (MOBLP) which is based on the process of cross-validation has been developed for better estimate of variogram parameters. This model is illustrated with some rainfall data from Luan River Basin in China. The case study demonstrated that MOBLP is an effective way to achieve a valid variogram model.  相似文献   

13.
Ordinary kriging and non-linear geostatistical estimators are now well accepted methods in mining grade control and mine reserve estimation. In kriging, the search volume or ‘kriging neighbourhood’ is defined by the user. The definition of the search space can have a significant impact on the outcome of the kriging estimate. In particular, too restrictive neighbourhood, can result in serious conditional bias. Kriging is commonly described as a ‘minimum variance estimator’ but this is only true when the neighbourhood is properly selected. Arbitrary decisions about search space are highly risky. The criteria to consider when evaluating a particular kriging neighbourhood are the slope of the regression of the ‘true’ and ‘estimated’ block grades, the number of kriging negative weights and the kriging variance. Search radius is one of the most important parameters of search volume which often is determined on the basis of influence of the variogram. In this paper the above-mentioned parameters are used to determine optimal search radius.  相似文献   

14.
In the context of spatial statistics, the classical variogram estimator proposed by Matheron can be written as a quadratic form of the observations. If data are Gaussian with constant mean, then the correlation between the classical variogram estimator at two different lags is a function of the spatial design matrix and the variance matrix. When data are independent with unidimensional and regular support, an explicit formula for this correlation is available. The same is true for a multidimensional and regular support as can be shown by using Kronecker products of matrices. As variogram fitting is a crucial stage for correct spatial prediction, it is proposed to use a generalized least squares method with an explicit formula for the covariance structure (GLSE). A good approximation of the covariance structure is achieved by taking account of the explicit formula for the correlation in the independent situation. Simulations are carried out with several types of underlying variograms, as well as with outliers in the data. Results show that this technique (GLSE), combined with a robust estimator of the variogram, improves the fit significantly.  相似文献   

15.
Design-based sampling strategies based on classical sampling theory offer unprecedented potentials for estimation of non-ergodic variograms. Unbiased and uncorrelated estimates of the semivariance at the selected lags and of its sampling variance can be simply obtained. These estimates are robust against deviations from an assumed spatial autocorrelation model. The same holds for the variogram model parameters and their sampling (co)variances. Moreover, an objective measure for lack of fit of the fitted model can simply be derived. The estimators for two basic sampling designs, simple random sampling and stratified simple random sampling of pairs of points, are presented. The first has been tested in real world for estimating the non-ergodic variograms of three soil properties. The parameters of variogram models and their sampling (co)variances were estimated with 72 pairs of points distributed over six lags.  相似文献   

16.
This study compares kriging and maximum entropy estimators for spatial estimation and monitoring network design. For second-order stationary random fields (a subset of Gaussian fields) the estimators and their associated interpolation error variances are identical. Simple lognormal kriging differs from the lognormal maximum entropy estimator, however, in both mathematical formulation and estimation error variances. Two numerical examples are described that compare the two estimators. Simple lognormal kriging yields systematically higher estimates and smoother interpolation surfaces compared to those produced by the lognormal maximum entropy estimator. The second empirical comparison applies kriging and entropy-based models to the problem of optimizing groundwater monitoring network design, using six alternative objective functions. The maximum entropy-based sampling design approach is shown to be the more computationally efficient of the two.  相似文献   

17.
The classical variogram estimator proposed by Matheron can be written as a quadratic form of the observations. When data have an elliptically contoured distribution with constant mean, the correlation between the classical variogram estimator at two different lags is a function of the spatial design matrix, the covariance matrix, and the kurtosis. Several specific cases are studied closely. A subclass of elliptically contoured distributions with a particular family of covariance matrices is shown to possess exactly the same correlation structure for the classical variogram estimator as the multivariate independent Gaussian distribution. The consequences on variogram fitting by generalized least squares are discussed.  相似文献   

18.
The classical variogram estimator proposed by Matheron can be written as a quadratic form of the observations. When data have an elliptically contoured distribution with constant mean, the correlation between the classical variogram estimator at two different lags is a function of the spatial design matrix, the covariance matrix, and the kurtosis. Several specific cases are studied closely. A subclass of elliptically contoured distributions with a particular family of covariance matrices is shown to possess exactly the same correlation structure for the classical variogram estimator as the multivariate independent Gaussian distribution. The consequences on variogram fitting by generalized least squares are discussed.  相似文献   

19.
Assessment of the sampling variance of the experimental variogram is an important topic in geostatistics as it gives the uncertainty of the variogram estimates. This assessment, however, is repeatedly overlooked in most applications mainly, perhaps, because a general approach has not been implemented in the most commonly used software packages for variogram analysis. In this paper the authors propose a solution that can be implemented easily in a computer program, and which, subject to certain assumptions, is exact. These assumptions are not very restrictive: second-order stationarity (the process has a finite variance and the variogram has a sill) and, solely for the purpose of evaluating fourth-order moments, a Gaussian distribution for the random function. The approach described here gives the variance–covariance matrix of the experimental variogram, which takes into account not only the correlation among the experiemental values but also the multiple use of data in the variogram computation. Among other applications, standard errors may be attached to the variogram estimates and the variance–covariance matrix may be used for fitting a theoretical model by weighted, or by generalized, least squares. Confidence regions that hold a given confidence level for all the variogram lag estimates simultaneously have been calculated using the Bonferroni method for rectangular intervals, and using the multivariate Gaussian assumption for K-dimensional elliptical intervals (where K is the number of experimental variogram estimates). A general approach for incorporating the uncertainty of the experimental variogram into the uncertainty of the variogram model parameters is also shown. A case study with rainfall data is used to illustrate the proposed approach.  相似文献   

20.
Generalized covariance functions in estimation   总被引:3,自引:0,他引:3  
I discuss the role of generalized covariance functions in best linear unbiased estimation and methods for their selection. It is shown that the experimental variogram (or covariance function) of the detrended data can be used to obtain a preliminary estimate of the generalized covariance function without iterations and I discuss the advantages of other parameter estimation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号