首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Assuming that the gravity anomaly and disturbing potential are given on a reference ellipsoid, the result of Sjöberg (1988, Bull Geod 62:93–101) is applied to derive the potential coefficients on the bounding sphere of the ellipsoid to order e 2 (i.e. the square of the eccentricity of the ellipsoid). By adding the potential coefficients and continuing the potential downward to the reference ellipsoid, the spherical Stokes formula and its ellipsoidal correction are obtained. The correction is presented in terms of an integral over the unit sphere with the spherical approximation of geoidal height as the argument and only three well-known kernel functions, namely those of Stokes, Vening-Meinesz and the inverse Stokes, lending the correction to practical computations. Finally, the ellipsoidal correction is presented also in terms of spherical harmonic functions. The frequently applied and sometimes questioned approximation of the constant m, a convenient abbreviation in normal gravity field representations, by e 2/2, as introduced by Moritz, is also discussed. It is concluded that this approximation does not significantly affect the ellipsoidal corrections to potential coefficients and Stokes formula. However, whether this standard approach to correct the gravity anomaly agrees with the pure ellipsoidal solution to Stokes formula is still an open question.  相似文献   

3.
魏子卿 《测绘学报》2022,51(6):797-803
在空间大地测量时代,GNSS可以测定地面点的大地高,使重力扰动变成了直接观测量,以重力扰动为边界条件的第二边值问题在大地测量中得以实用化。它的解与GNSS组合正在成为一种颇有应用前景的海拔高测量方法。本文原理性地讨论了有两种不同边界面的球近似第二大地边值问题。第一种以地形面为边界面,给出了高程异常与地面垂线偏差的解析延拓解;第二种以参考椭球面为边界面,将其外部地形质量按照Helmert第二压缩法移至参考椭球面,然后将Hotine函数与从地球表面延拓至边界面的Helmert重力扰动进行卷积,并顾及地形间接影响,最后得到大地水准面高、椭球面垂线偏差、高程异常与地面垂线偏差的Helmert解。在讨论部分,进行了第二与第三大地边值问题的比较,提出了现有重力点高程从正高或正常高到大地高的改化方法,并展望了它的应用前景。  相似文献   

4.
Comparisons between high-degree models of the Earth’s topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide feedback on the modelling techniques and help to better understand the gravity field composition. Degree correlations (cross-correlation coefficients) or reduction rates (quantifying the amount of topographic signal contained in the gravitational potential) are indicators used in a number of contemporary studies. However, depending on the modelling techniques and underlying levels of approximation, the correlation at high degrees may vary significantly, as do the conclusions drawn. The present paper addresses this problem by attempting to provide a guide on global correlation measures with particular emphasis on approximation effects and variants of topographic potential modelling. We investigate and discuss the impact of different effects (e.g., truncation of series expansions of the topographic potential, mass compression, ellipsoidal versus spherical approximation, ellipsoidal harmonic coefficient versus spherical harmonic coefficient (SHC) representation) on correlation measures. Our study demonstrates that the correlation coefficients are realistic only when the model’s harmonic coefficients of a given degree are largely independent of the coefficients of other degrees, permitting degree-wise evaluations. This is the case, e.g., when both models are represented in terms of SHCs and spherical approximation (i.e. spherical arrangement of field-generating masses). Alternatively, a representation in ellipsoidal harmonics can be combined with ellipsoidal approximation. The usual ellipsoidal approximation level (i.e. ellipsoidal mass arrangement) is shown to bias correlation coefficients when SHCs are used. Importantly, gravity models from the International Centre for Global Earth Models (ICGEM) are inherently based on this approximation level. A transformation is presented that enables a transformation of ICGEM geopotential models from ellipsoidal to spherical approximation. The transformation is applied to generate a spherical transform of EGM2008 (sphEGM2008) that can meaningfully be correlated degree-wise with the topographic potential. We exploit this new technique and compare a number of models of topographic potential constituents (e.g., potential implied by land topography, ocean water masses) based on the Earth2014 global relief model and a mass-layer forward modelling technique with sphEGM2008. Different to previous findings, our results show very significant short-scale correlation between Earth’s gravitational potential and the potential generated by Earth’s land topography (correlation +0.92, and 60% of EGM2008 signals are delivered through the forward modelling). Our tests reveal that the potential generated by Earth’s oceans water masses is largely unrelated to the geopotential at short scales, suggesting that altimetry-derived gravity and/or bathymetric data sets are significantly underpowered at 5 arc-min scales. We further decompose the topographic potential into the Bouguer shell and terrain correction and show that they are responsible for about 20 and 25% of EGM2008 short-scale signals, respectively. As a general conclusion, the paper shows the importance of using compatible models in topographic/gravitational potential comparisons and recommends the use of SHCs together with spherical approximation or EHCs with ellipsoidal approximation in order to avoid biases in the correlation measures.  相似文献   

5.
In this paper we study the following mixed boundary value problem
where is the reference ellipsoid, and T the disturbing potential. With the help of the variational principles of partial differential equations and the expression of ellipsoidal harmonic series, we give a linear system related to the coefficients of the ellipsoidal harmonic series. Hence the solution of the problem can be obtained in the form of ellipsoidal harmonic series, which supplies us an important theoretical basis for making use of data given by satellite altimetry measurements more efficiently. Received: 16 January 1996; Accepted: 22 January 1997  相似文献   

6.
J. Ågren 《Journal of Geodesy》2004,78(4-5):314-332
One important application of an Earth Gravity Model (EGM) is to determine the geoid. Since an EGM is represented by an external-type series of spherical harmonics, a biased geoid model is obtained when the EGM is applied inside the masses in continental regions. In order to convert the downward-continued height anomaly to the corresponding geoid undulation, a correction has to be applied for the analytical continuation bias of the geoid height. This technique is here called the geoid bias method. A correction for the geoid bias can also be utilised when an EGM is combined with terrestrial gravity data, using the combined approach to topographic corrections. The geoid bias can be computed either by a strict integral formula, or by means of one or more terms in a binomial expansion. The accuracy of the lowest binomial terms is studied numerically. It is concluded that the first term (of power H2) can be used with high accuracy up to degree 360 everywhere on Earth. If very high mountains are disregarded, then the use of the H2 term can be extended up to maximum degrees as high as 1800. It is also shown that the geoid bias method is practically equal to the technique applied by Rapp, which utilises the quasigeoid-to-geoid separation. Another objective is to carefully consider how the combined approach to topographic corrections should be interpreted. This includes investigations of how the above-mentioned H2 term should be computed, as well as how it can be improved by a correction for the residual geoid bias. It is concluded that the computation of the combined topographic effect is efficient in the case that the residual geoid bias can be neglected, since the computation of the latter is very time consuming. It is nevertheless important to be able to compute the residual bias for individual stations. For reasonable maximum degrees, this can be used to check the quality of the H2 approximation in different situations.Acknowledgement The author would like to thank Prof. L.E. Sjöberg for several ideas and for reading two draft versions of the paper. His support and constructive remarks have improved its quality considerably. The valuable suggestions from three unknown reviewers are also appreciated.  相似文献   

7.
In this paper an overdetermined Geodetic Boundary Value Problem (GBVP) approach for telluroid and quasi-geoid computations is presented. The presented GBVP approach can solve the problem of potential value computation on the surface of the Earth, which when applied to a mapping scheme, e.g., here minimum distance mapping, provides a point-wise approach to telluroid computation. Besides, we have succeeded in reducing the number of equations and unknowns of the minimum distance telluroid mapping by one. The sufficient condition of minimum distance telluroid mapping is also recapitulated. Since the introduced GBVP approach has the advantage of implementing various gravity observables simultaneously as input boundary data, it can be regarded as a data fusion technique that exploits all available gravity data. The developed GBVP is used for the computation of the quasi-geoid within a test area in Southwest Finland.  相似文献   

8.
The calculation of topographic (and iso- static) reductions is one of the most time-consuming operations in gravity field modelling. For this calculation, the topographic surface of the Earth is often divided with respect to geographical or map-grid lines, and the topographic heights are averaged over the respective grid elements. The bodies bounded by surfaces of constant (ellipsoidal) heights and geographical grid lines are denoted as tesseroids. Usually these ellipsoidal (or spherical) tesseroids are replaced by “equivalent” vertical rectangular prisms of the same mass. This approximation is motivated by the fact that the volume integrals for the calculation of the potential and its derivatives can be exactly solved for rectangular prisms, but not for the tesseroids. In this paper, an approximate solution of the spherical tesseroid integrals is provided based on series expansions including third-order terms. By choosing the geometrical centre of the tesseroid as the Taylor expansion point, the number of non-vanishing series terms can be greatly reduced. The zero-order term is equivalent to the point-mass formula. Test computations show the high numerical efficiency of the tesseroid method versus the prism approach, both regarding computation time and accuracy. Since the approximation errors due to the truncation of the Taylor series decrease very quickly with increasing distance of the tesseroid from the computation point, only the elements in the direct vicinity of the computation point have to be separately evaluated, e.g. by the prism formulas. The results are also compared with the point-mass formula. Further potential refinements of the tesseroid approach, such as considering ellipsoidal tesseroids, are indicated.  相似文献   

9.
The topographic effects by Stokes formula are typically considered for a spherical approximation of sea level. For more precise determination of the geoid, sea level is better approximated by an ellipsoid, which justifies the consideration of the ellipsoidal corrections of topographic effects for improved geoid solutions. The aim of this study is to estimate the ellipsoidal effects of the combined topographic correction (direct plus indirect topographic effects) and the downward continuation effect. It is concluded that the ellipsoidal correction to the combined topographic effect on the geoid height is far less than 1 mm. On the contrary, the ellipsoidal correction to the effect of downward continuation of gravity anomaly to sea level may be significant at the 1-cm level in mountainous regions. Nevertheless, if Stokes formula is modified and the integration of gravity anomalies is limited to a cap of a few degrees radius around the computation point, nor this effect is likely to be significant.AcknowledgementsThe author is grateful for constructive remarks by J Ågren and the three reviewers.  相似文献   

10.
G. Sona 《Journal of Geodesy》1995,70(1-2):117-126
The correct use of ellipsoidal coordinates and related ellipsoidal harmonic functions can provide a representation of linearized Geodetic Boundary Value Problems (GBVP) much closer to the exact ones than what is usually done in spherical approximation: this becomes important in the present age, since terms of the type e2N, possibly amounting to several dozens of centimetres, are nowadays observable.Although the theory of ellipsoidal harmonics has been introduced into geodesy by several authors to treat gravity global models, the numerical computation of ellipsoidal harmonics of high degree and order seems to be more critical than it has been recognized. In particular, exact recursive relations display a quite unstable behaviour, no matter what normalization constants are used; it is only through particular representation of hypergeometric functions that it is possible to find a sound method for numerical manipulation. Also the asymptotic approximations, exploiting the smallness of the eccentricity, e2, are analysed in relation to their critical behaviour for particular values of degree and order, it is shown that a limit layer theory can provide a simpler, better, and stable approximation of the exact values of ellipsoidal harmonics.  相似文献   

11.
Green's function for the boundary-value problem of Stokes's type with ellipsoidal corrections in the boundary condition for anomalous gravity is constructed in a closed form. The `spherical-ellipsoidal' Stokes function describing the effect of two ellipsoidal correcting terms occurring in the boundary condition for anomalous gravity is expressed in O(e 2 0)-approximation as a finite sum of elementary functions analytically representing the behaviour of the integration kernel at the singular point ψ=0. We show that the `spherical-ellipsoidal' Stokes function has only a logarithmic singularity in the vicinity of its singular point. The constructed Green function enables us to avoid applying an iterative approach to solve Stokes's boundary-value problem with ellipsoidal correction terms involved in the boundary condition for anomalous gravity. A new Green-function approach is more convenient from the numerical point of view since the solution of the boundary-value problem is determined in one step by computing a Stokes-type integral. The question of the convergence of an iterative scheme recommended so far to solve this boundary-value problem is thus irrelevant. Received: 5 June 1997 / Accepted: 20 February 1998  相似文献   

12.
The issue of optimal regularization is investigated in the context of the processing of satellite gravity gradiometry (SGG) data that will be acquired by the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite. These data are considered as the input for determination of the Earths gravity field in the form of a series of spherical harmonics. Exploitation of a recently developed fast processing algorithm allowed a very realistic setup of the numerical experiments to be specified, in particular: a non-repeat orbit; 1-s sampling rate; half-year duration of data series; and maximum degree and order set to 300. The first goal of the study is to compare different regularization techniques (regularization matrices). The conclusion is that the first-order Tikhonov regularization matrix (the elements are practically proportional to the degree squared) and the Kaula regularization matrix (the elements are proportional to the fourth power of the degree) are somewhat superior to other regularization techniques. The second goal is to assess the generalized cross-validation method for the selection of the regularization parameter. The inference is that the regularization parameter found this way is very reasonable. The time expenditure required by the generalized cross-validation method remains modest even when a half-year set of SGG data is considered. The numerical study also allows conclusions to be drawn regarding the quality of the Earths gravity field model that can be obtained from the GOCE SGG data. In particular, it is shown that the cumulative geoid height error between degrees 31 and 200 will not exceed 1 cm. AcknowledgmentsThe authors thank Dr. E. Schrama for valuable discussions and for computing the orbit used to generate the long data set. They are also grateful to Prof. Tscherning and two anonymous reviewers for numerous valuable remarks and suggestions. The orbit to generate the short data set was kindly provided by J. van den IJssel. Computing resources were provided by Stichting Nationale Computerfaciliteiten (NCF), grant SG-027.  相似文献   

13.
In a modern application of Stokes formula for geoid determination, regional terrestrial gravity is combined with long-wavelength gravity information supplied by an Earth gravity model. Usually, several corrections must be added to gravity to be consistent with Stokes formula. In contrast, here all such corrections are applied directly to the approximate geoid height determined from the surface gravity anomalies. In this way, a more efficient workload is obtained. As an example, in applications of the direct and first and second indirect topographic effects significant long-wavelength contributions must be considered, all of which are time consuming to compute. By adding all three effects to produce a combined geoid effect, these long-wavelength features largely cancel. The computational scheme, including two least squares modifications of Stokes formula, is outlined, and the specific advantages of this technique, compared to traditional gravity reduction prior to Stokes integration, are summarised in the conclusions and final remarks. AcknowledgementsThis paper was written whilst the author was a visiting scientist at Curtin University of Technology, Perth, Australia. The hospitality and fruitful discussions with Professor W. Featherstone and his colleagues are gratefully acknowledged.  相似文献   

14.
The two Altimetry-Gravimetry linearized boundary value problems, both characterized by gravity anomaly boundary data on the continents, while on the oceans either the gravity potential or its radial derivative is assumed to be known, are investigated in their modified version, in the spherical boundary approximation. A constant unknown bias is added to the data set on the oceans, while a vanishing zerodegree harmonic component is assumed as additional constraint. Existence, uniqueness and regularity results are obtained, it is proved that, in order to obtain regularization of the solution, not only regular data must be imposed, on the continents and on the oceans, but suitable constraints on the coast line are needed.  相似文献   

15.
Summary The fixed gravimetric boundary value problem of Physical Geodesy is a nonlinear, oblique derivative problem. Expanding the non-linear boundary condition into a Taylor series—based upon some reference potential field approximating the geopotential—it is shown that the numerical convergence of this series is very rapid; only the quadratic term may have some practical impact on the solution. The secondorder solution term can be described by a spherical integral formula involving the deflections of the vertical with respect to the reference field. The influence of nonlinear terms on the figure of the level surfaces (e.g. the geoid) is roughly estimated to have an order of magnitude of some few centimetres, based upon a Somigliana-Pizzetti reference field; if on the other hand some high-degree geopotential model is used as reference then the effects by non-linearity are negligible from a practical point of view.  相似文献   

16.
Today the combination of Stokes formula and an Earth gravity model (EGM) for geoid determination is a standard procedure. However, the method of modifying Stokes formula varies from author to author, and numerous methods of modification exist. Most methods modify Stokes kernel, but the most widely applied method, the remove compute restore technique, removes the EGM from the gravity anomaly to attain a residual gravity anomaly under Stokes integral, and at least one known method modifies both Stokes kernel and the gravity anomaly. A general model for modifying Stokes formula is presented; it includes most of the well-known techniques of modification as special cases. By assuming that the error spectra of the gravity anomalies and the EGM are known, the optimum model of modification is derived based on the least-squares principle. This solution minimizes the expected mean square error (MSE) of all possible solutions of the general geoid model. A practical formula for estimating the MSE is also presented. The power of the optimum method is demonstrated in two special cases. AcknowledgementsThis paper was partly written whilst the author was a visiting scientist at The University of New South Wales, Sydney, Australia. He is indebted to Professor W. Kearsley and his colleagues, and their hospitality is acknowledged.  相似文献   

17.
Ellipsoidal geoid computation   总被引:1,自引:1,他引:0  
Modern geoid computation uses a global gravity model, such as EGM96, as a third component in a remove–restore process. The classical approach uses only two: the reference ellipsoid and a geometrical model representing the topography. The rationale for all three components is reviewed, drawing attention to the much smaller precision now needed when transforming residual gravity anomalies. It is shown that all ellipsoidal effects needed for geoid computation with millimetric accuracy are automatically included provided that the free air anomaly and geoid are calculated correctly from the global model. Both must be consistent with an ellipsoidal Earth and with the treatment of observed gravity data. Further ellipsoidal corrections are then negligible. Precise formulae are developed for the geoid height and the free air anomaly using a global gravity model, given as spherical harmonic coefficients. Although only linear in the anomalous potential, these formulae are otherwise exact for an ellipsoidal reference Earth—they involve closed analytical functions of the eccentricity (and the Earths spin rate), rather than a truncated power series in e2. They are evaluated using EGM96 and give ellipsoidal corrections to the conventional free air anomaly ranging from –0.84 to +1.14 mGal, both extremes occurring in Tibet. The geoid error corresponding to these differences is dominated by longer wavelengths, so extrema occur elsewhere, rising to +766 mm south of India and falling to –594 mm over New Guinea. At short wavelengths, the difference between ellipsoidal corrections based only on EGM96 and those derived from detailed local gravity data for the North Sea geoid GEONZ97 has a standard deviation of only 3.3 mm. However, the long-wavelength components missed by the local computation reach 300 mm and have a significant slope. In Australia, for example, such a slope would amount to a 600-mm rise from Perth to Cairns.  相似文献   

18.
Gravimetric geoid determination by Stokes formula requires that the effects of topographic masses be removed prior to Stokes integration. This step includes the direct topographic and the downward continuation (DWC) effects on gravity anomaly, and the computations yield the co-geoid height. By adding the effect of restoration of the topography, the indirect effect on the geoid, the geoid height is obtained. Unfortunately, the computations of all these topographic effects are hampered by the uncertainty of the density distribution of the topography. Usually the computations are limited to a constant topographic density, but recently the effects of lateral density variations have been studied for their direct and indirect effects on the geoid. It is emphasised that the DWC effect might also be significantly affected by a lateral density variation. However, instead of computing separate effects of lateral density variation for direct, DWC and indirect effects, it is shown in two independent ways that the total geoid effect due to the lateral density anomaly can be represented as a simple correction proportional to the lateral density anomaly and the elevation squared of the computation point. This simple formula stems from the fact that the significant long-wavelength contributions to the various topographic effects cancel in their sum. Assuming that the lateral density anomaly is within 20% of the standard topographic density, the derived formula implies that the total effect on the geoid is significant at the centimetre level for topographic elevations above 0.66 km. For elevations of 1000, 2000 and 5000 m the effect is within ± 2.2, ± 8.8 and ± 56.8 cm, respectively. For the elevation of Mt. Everest the effect is within ± 1.78 m.  相似文献   

19.
The solutions of four ellipsoidal approximations for the gravimetric geoid are reviewed: those of Molodenskii et al., Moritz, Martinec and Grafarend, and Fei and Sideris. The numerical results from synthetic tests indicate that Martinec and Grafarends solution is the most accurate, while the other three solutions contain an approximation error which is characterized by the first-degree surface spherical harmonic. Furthermore, the first 20 degrees of the geopotential harmonic series contribute approximately 90% of the ellipsoidal correction. The determination of a geoid model from the generalized Stokes scheme can accurately account for the ellipsoidal effect to overcome the first-degree surface spherical harmonic error regardless of the solution used.  相似文献   

20.
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号