首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bio-acoustic surveys and associated zooplankton net tows have documented anomalously high concentrations of zooplankton within a 100 m layer above the hydrothermal plumes at Endeavour Segment, Juan de Fuca Ridge. These and other data suggest that congregating epi-plume zooplankton are exploiting a food substrate associated with the hydrothermal plume. Ascending, organic-rich particles could provide a connection. Consequently, two paired sequentially sampling ascending and descending particle flux traps and a current meter were deployed on each of three moorings from July 1994 to May 1995. Mooring sites included an on-axis site (OAS; 47°57.0′N, 129°05.7′W) near the main Endeavour vent field, a “down-current” site 3 km west of the main vent field (WS), and a third background station 43 km northeast of the vent field (ES). Significant ascending and descending particle fluxes were measured at all sites and depths. Lipid analyses indicated that ascending POC was derived from mid-depth and deep zooplankton whereas descending POC also contained a component of photosynthetically derived products from the sea surface. Highest ascending POC fluxes were found at the hydrothermal plume-swept sites (OAS and WS). The limited data available, however, precludes an unequivocal conclusion that hydrothermal processes contribute to the ascending flux of organic carbon at each site. Highest ascending to descending POC flux ratios were also found at WS. Observed trends in POC, PMn/PTi, and PFe/PTi clearly support a hydrothermal component to the descending flux at the plume-swept WS site (no descending data was recovered at OAS) but not at the background ES site. Alternative explanations for ascending particle data are discussed. First-order calculations for the organic carbon input (5–22 mg C m−2 d−1) required to sustain observed epi-plume zooplankton anomalies at Endeavour are comparable both to measured total POC flux to epi-plume depths (2–5 mg C m−2 d−1: combined hydrothermal and surface derived organic carbon) and to estimates of the total potential in situ organic carbon production (2–9 mg C m−2 d−1) from microbial oxidation of hydrothermal plume H2, CH4 and NH4+.  相似文献   

2.
Time-series measurements of 234Th activities and particulate organic carbon (POC) concentrations were made at time-series stations (K1, K2, K3, and KNOT) in the northwestern North Pacific from October 2002 to August 2004. Seasonal changes in POC export fluxes from the surface layer (∼100 m) were estimated using 234Th as a tracer. POC fluxes varied seasonally from approximately 0 to 180 mg C m−2 d−1 and were higher in spring–summer than in autumn–winter. The export ratio (e-ratio) ranged from 6% to 55% and was also higher in spring–summer. Annual POC fluxes were estimated to be 31 g C m−2 y−1 in the subarctic region (station K2) and 23 g C m−2 y−1 in the region between the subarctic and subtropical gyres (station K3). POC fluxes and e-ratios in the northwestern North Pacific were much higher than those in most other oceans. The annual POC flux corresponded to 69% of annual new production estimated from the seasonal difference of the nutrient in the Western Subarctic Gyre (45 g C m−2 y−1). These results indicate that much of the organic carbon assimilated in the surface layer of the northwestern North Pacific is transferred to the deep ocean in particulate form. Our conclusions support previous reports that diatoms play an important role in the biological pump.  相似文献   

3.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

4.
Sediment traps were deployed for almost 1 yr at two sites near 178°40′E in 1996–1997 on Chatham Rise (New Zealand). These sites were either side of the Subtropical Front (STF), which is a biologically productive zone, characterised by moderate atmospheric CO2 uptake. At each site, PARFLUX sediment traps (Mk 7G–21) were deployed at 300 and 1000 m in 1500 m water depth. At 42°42′S, north of the STF, approximately 80% of the integrated total mass, POC and biogenic silica flux at 300 m occurred in a 7-day pulse in austral mid-spring (1064, 141 and 6 mg m−2 d−1, respectively, in early October). This pulse was recorded a week later in the 1000 m trap, indicating a particle sinking rate of 100 m d−1. In contrast, at 44°37′S, south of the STF, the main flux of total mass and biogenic silica occurred 3 weeks later in late spring (289 and 3 mg m−2 d−1, respectively, in early November). Organic carbon, nitrogen and phosphorus fluxes were persistently high over spring at the southern site, although total POC flux integrated over 3 months was only 60 mg m−2 d−1. Thus, up to 2–3 times more material was exported north of the STF, compared with fluxes measured <200 km away to the south. As an integrated proportion of the annual total mass flux, however, more organic carbon was exported south of the STF (17% cf. 5–14%). Furthermore, organic material exported in spring from southern waters was labile and protein-rich (C : N — 8–16, C : P — 200–450, N : P — 13–36), compared to the more refractory, diatom-dominated material sinking out north of the STF in spring (C : N 9–22, C : P 50–230, N : P 5–19). These observations are consistent with anomalously high benthic biomass and diversity observed on south Chatham Rise. Resuspension and differential particle settling are probable causes for depth increases in particulate flux. Estimated particle source areas may be up to 120 km away due to high levels of mesoscale activity and mean flow in the STF region.  相似文献   

5.
The vertical sinking flux of particulate Al, Fe, Pb, and Ba from the upper 250 m of the Labrador Sea has been estimated from measurements of 234Th/238U disequilibrium and the respective metal/234Th ratios in >53 μm size particles. 234Th-derived particulate metal fluxes include in situ scavenged metals, labile lithogenic metals, and metals derived from external input (e.g., atmospheric supply). In contrast to the POC/234Th ratio, particle size-fractionated (0.4–10 μm, 10–53 μm, and >53 μm) Al/234Th, Fe/234Th and Pb/234Th, and Ba/234Th ratios generally increase with depth and exhibit no systematic change with particle diameter. Sinking fluxes of particulate Al (2.47–22.3 μmol m−2 d−1), Fe (2.69–16.3 μmol m−2 d−1), Pb (2.85–70 nmol m−2 d−1), and Ba (0.13–2.1 μmol m−2 d−1) at 50 m (base of the euphotic zone) and 100 m (base of the mixed layer) are largely within the range of previous sediment trap results from other ocean basins. Estimates of the upper ocean residence time of Al (0.07–0.28 yr) and Pb (0.8–2.9 yr) are short compared to previously reported values. The settling rate of >53 μm particles calculated from the 234Th data ranges from 14 to 38 m d−1.  相似文献   

6.
Measurements of 234Th/238U disequilibria and particle size-fractionated (1, 10, 20, 53, 70, 100 μm) organic C and 234Th were made to constrain estimates of the export flux of particulate organic C (POC) from the surface waters of the Ligurian, Tyrrhenian and Aegean Seas in March–June 2004. POC exported from the surface waters (75–100 m depth) averaged 9.2 mmol m−2 d−1 in the Ligurian and Tyrrhenian Seas (2.3±0.5–14.9±3.0 mmol m−2 d−1) and 0.9 mmol m−2 d−1 in the Aegean Sea. These results are comparable to previous measurements of 234Th-derived and sediment-trap POC fluxes from the upper 200 m in the Mediterranean Sea. Depth variations in the POC/234Th ratio suggest two possible controls. First, decreasing POC/234Th ratios with depth were attributed to preferential remineralization of organic C. Second, the occurrence of maxima or minima in the POC/234Th ratio near the DCM suggests influence by phytoplankton dynamics. To assess the accuracy of these data, the empirical 234Th-method was evaluated by quantifying the extent to which the 234Th-based estimate of POC flux, PPOC, deviates from the true flux, FPOC, defined as the p-ratio (p-ratio=PPOC/FPOC=STh/SPOC, where S=particle sinking rate). Estimates of the p-ratio made using Stokes’ Law and the particle size distributions of organic C and 234Th yield values ranging from 0.93–1.45. The proximity of the p-ratio to unity implies that differences in the sinking rates of POC- and 234Th-carrying particles did not bias 234Th-normalized POC fluxes by more than a factor of two.  相似文献   

7.
The taxonomic composition and types of particles comprising the downward particle flux were examined during the mesoscale artificial iron fertilisation experiment LOHAFEX. The experiment was conducted in low-silicate waters of the Atlantic Sector of the Southern Ocean during austral summer (January–March 2009), and induced a bloom dominated by small flagellates. Downward particle flux was low throughout the experiment, and not enhanced by addition of iron; neutrally buoyant sediment traps contained mostly faecal pellets and faecal material apparently reprocessed by mesozooplankton. TEP fluxes were low, ≤5 mg GX eq. m−2 d−1, and a few phytodetrital aggregates were found in the sediment traps. Only a few per cent of the POC flux was found in the traps consisting of intact protist plankton, although remains of taxa with hard body parts (diatoms, tintinnids, thecate dinoflagellates and foraminifera) were numerous, far more so than intact specimens of these taxa. Nevertheless, many small flagellates and coccoid cells, belonging to the pico- and nanoplankton, were found in the traps, and these small, soft-bodied cells probably contributed the majority of downward POC flux via mesozooplankton grazing and faecal pellet export. TEP likely played an important role by aggregating these small cells, and making them more readily available to mesozooplankton grazers.  相似文献   

8.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

9.
The vertical distribution (0–900 m) of zooplankton biomass and indices of feeding (gut fluorescence, GF) and metabolism (electron transfer system, ETS) were studied across an anticyclonic eddy south of Gran Canaria Island (Canary Islands). Two dense layers of organisms were clearly observed during the day, one above 200 m and the other at about 500 m, coincident with the deep scattering layer (DSL). The biomass displacement due to interzonal migrants in the euphotic zone was more than 2-fold higher than that previously reported for the southern area of this archipelago. The gut flux estimated (0.14–0.44 mgC m−2 d−1) was similar to the values previously found in the Canaries. The respiratory flux outside the eddy (1.85 mgC m−2 d−1) was in the lower range of values reported for this area. Inside the eddy, migrant biomass and respiration rates were 2- and 4- fold higher than in the surrounding waters. Active flux mediated by diel vertical migrants inside the eddy (8.28 mgC m−2 d−1) was up to 53% of the passive carbon flux to the mesopelagic zone (15.8 mgC m−2 d−1). It is, therefore, suggested that the anticyclonic eddy enhanced both migration from deep waters and active flux.  相似文献   

10.
Investigations of lithogenic and biogenic particle fluxes using long-term sediment traps are still very rare in the northern high latitudes and are restricted to the arctic marginal seas and sub-arctic regions. Here data on the variability of fluxes of lithogenic matter, CaCO3, opal, and organic carbon and biomarker composition from the central Arctic Ocean are presented for a 1-year period. The study was carried out on material obtained from a long-term mooring system equipped with two multi-sampling traps, at 150 and 1550 m depth, and deployed on the southern Lomonosov Ridge close to the Laptev Sea continental margin from September 1995 to August 1996. In addition, data from surface sediments were included in the study. Annual fluxes of lithogenic matter, CaCO3, opal, and particulate organic carbon were 3.9, 0.8, 2.6, and 1.5 g m−2 y−1, respectively, in the shallow trap and 11.3, 0.5, 2.9, and 1.05 g m−2 y−1, respectively, in the deep trap.Both the shallow and the deep trap showed significant variations in vertical flux over the year. Higher values were found from mid-July to the end of October (total mass flux of 75–130 mg m−2 d−1 in the shallow trap and 40–225 mg m−2 d−1 in the deep trap). During all other months, fluxes were fairly low in both traps (most total mass flux values <10 mg m−2 d−1). The interval of increased fluxes can be separated into (1) a mid-July/August maximum caused by increased primary production as documented in high abundances of marine biomarkers and diatoms and (2) a September/October maximum caused by increased influence of Lena River discharge indicated by maximum lithogenic flux and large amounts of terrigenous/fluvial biomarkers in both traps. During September/October, total mass fluxes in the deep trap were significantly higher than in the shallow trap, suggesting a lateral sediment flux at greater depth. The lithogenic flux data also support the importance of sediment input from the Laptev Sea for the sediment accumulation on the Lomonosov Ridge on geological time scales, as indicated in sedimentary records from this region.  相似文献   

11.
Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C m−2 d−1. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C m−2 d−1 (mean 3.7 mg C m−2 d−1), whereas fluxes on the East Greenland shelf are considerably higher, 9.1–22.5 mg C m−2 d−1. On the Norwegian continental slope Corg fluxes of 3.3–13.9 mg C m−2 d−1 (mean 6.5 mg C m−2 d−1) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004–1.1 mg C cm−3 a−1 at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03–0.6 a−1. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.  相似文献   

12.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

13.
In this study at the Bermuda Atlantic Time-series Study (BATS) site we demonstrate that the polonium–lead disequilibrium system may perform better as a tracer of organic carbon export under low-flux conditions (in this case, <2.5 mmol C m?2 d?1) than under bloom conditions in an oligotrophic setting. With very few exceptions, the POC flux predictions calculated from the water-column 210Po deficit were within a factor of 2 of the POC flux caught in surface-tethered sediment traps. However, we found higher correlation between size-fractionated particulate 210Po activity and POC concentration in November 2006 (r=0.93) than in January (r=0.79) and during the spring bloom in March 2007 (r=0.80). We suggest that this is due to the ability of polonium to distinguish between bulk mass flux and organic carbon export under oligotrophic and lithogenic-driven flux regimes. Further, we found that the POC/Po ratio on particles was largely independent of size class between 10 and 100 μm (P=0.13) during each season, supporting the notion that export in this oligotrophic system is driven by sinking aggregates of smaller cells and not by large, individual cells.  相似文献   

14.
Zooplankton biomass, gut fluorescence and electron transfer system (ETS) activity were measured in vertical profiles (0–900 m) in two different size classes (<1 and >1 mm) in Canary Island waters. Both size fractions displayed a typical pattern of distribution with higher biomass, gut fluorescence and ETS in the shallower layers at night. By day, however, the vertical distribution varied between the size fractions, with higher biomass of the small fraction in the 0–200 m and a layer of large organisms at depth (∼500 m). For both size fractions, average ETS activity was higher by day than at night at depths between 200 and 600 m. Similarly, gut fluorescence was slightly higher by day below 200 m. The downward export of respiratory carbon was 1.92 and 4.29 mg C m−2 d−1 for samples obtained southwest of Gran Canaria Island and west of Tenerife Island respectively, being 2.68 mg C m−2 d−1 for the whole area. These values represented 16–45% (22–28% for the area) of the calculated passive particulate export production resulting from primary production. The estimated “gut flux” accounted for 0.35 (western zone) and 2.37 mg C m−2 d−1 (southwest of Gran Canaria), being 1.28 mg C m−2 d−1 for the whole area and represented between 3 and 25% (11–14% for the whole area) of the estimated passive particle export flux. These results agree with previous estimates and suggest that diel-migrant zooplankton can play an important role in the downward flux of carbon.  相似文献   

15.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

16.
234Th was used to quantify sinking fluxes and residence times of particles in surface waters of the north-western Mediterranean Sea. Measurements of dissolved and particulate 234Th were made at the DYFAMED station (43°25′N–7°51′E, JGOFS-France program). Sampling covered 1 year on four cruises in 1994 (February 9, April 29, June 3, October 1) and focused on a transition period in mid-spring with six repeated profiles collected during May 1995. 234Th was nearly in equilibrium with its parent 238U most of the year, except in spring. The intensive sampling in May shows a rapid evolution throughout the month from a moderate 234Th deficit to near-equilibrium values. The time-series of 234Th were treated with steady-state and non-steady-state models. 234Th particulate fluxes clearly indicate large variability in export, with the highest values observed in spring. Particle residence times in the upper 40 m range from <10 to >250 days, and could increase by a factor of 10 within 2 weeks. POC fluxes from the upper 40 m and export ratios (ThE: ratio of 234Th-derived POC export to primary production), derived from the 234Th/238U disequilibrium in the water column and POC/234Th ratio on trapped material, decrease from about 9.5 mmol C m−2 d−1 and >22% in early May to less than 5 mmol C m−2 d−1 and 15% after mid-May. The 234Th-derived information is in agreement with the annual variations in Mediterranean Sea productivity.  相似文献   

17.
The often-rapid deposition of phytoplankton to sediments at the end of the spring phytoplankton bloom is an important component of benthic–pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, particularly in spatially heterogeneous environments. Surficial sediment chlorophyll-a, which can be measured quickly at many locations, has been used effectively by previous studies as an indicator of phytoplankton deposition to estuarine sediments. In this study, surficial sediment chlorophyll-a was quantified in late spring at 20–50 locations throughout Chesapeake Bay for 8 years (1993–2000). A model was developed to estimate chlorophyll-a deposition to sediments using these measurements, while accounting for chlorophyll-a degradation during the time between deposition and sampling. Carbon flux was derived from these estimates via C:chl-a = 75.Bay-wide, the accumulation of chlorophyll-a on sediments by late spring averaged 171 mg m−2, from which the chlorophyll-a and carbon sinking fluxes, respectively, were estimated to be 353 mg m−2 and 26.5 gC m−2. These deposition estimates were ∼50% of estimates based on a sediment trap study in the mid-Bay. During 1993–2000, the highest average chlorophyll-a flux was in the mid-Bay (248 mg m−2), while the lowest was in the lower Bay (191 mg m−2). Winter–spring average river flow was positively correlated with phytoplankton biomass in the lower Bay water column, while phytoplankton biomass in that same region of the Bay was correlated with increased chlorophyll-a deposition to sediments. Responses in other regions of the Bay were less clear and suggested that the concept that nutrient enrichment in high flow years leads to greater phytoplankton deposition to sediments may be an oversimplification. A comparison of the carbon flux associated with the deposition of the spring bloom with annual benthic carbon budgets indicated that the spring bloom did not contribute a disproportionately large fraction of annual carbon inputs to Chesapeake Bay sediments. Regional patterns in chlorophyll-a deposition did not correspond with the strong regional patterns that have been found for plankton net community metabolism during spring.  相似文献   

18.
Using simultaneous sampling with a commercial-sized trawl, a zooplankton net, and a sediment trap, we evaluated the contribution of vertically migrating micronekton to vertical material transport (biological pump) at two stations (3°00′N, 146°00′E and 3°30′N, 145°20′E) in the western equatorial North Pacific. The gravitational sinking particulate organic carbon flux out of the euphotic zone was 54.8 mg C m−2 day−1. The downward active carbon flux by diel migrant mesozooplankton was 23.53 and 9.97 mg C m−2 day−1, and by micronekton 4.40 and 2.26mg C m−2 day−1 at the two stations. Assuming that the micronekton sampling efficiency of the trawl was 14%, we corrected the downward carbon flux due to micronekton respiration to 29.9 and 15.2mg C m−2 day−1, or 54.6 and 27.7% of the sinking particle flux at the two stations. The corrected micronekton gut fluxes were 1.53 and 0.97mg C m−2 day−1. The role of myctophid fish fecal matter as a possible food resource for deep-sea organisms, based on its fatty acid and amino acid analysis, is discussed.  相似文献   

19.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

20.
Sedimentation of particulate carbon from the upper 200–300 m in the central Greenland Sea from August 1993 to June 1995 was less than 2 g C m−2 yr−1. Daily rates of sedimentation of particulate organic carbon reached highest values of about 18 mg m−2 d−1 in fall 1994. For total particulate material, maximum rates of sedimentation of about 250 mg m−2 d−1 were recorded in spring and fall 1994. For chlorophyll equivalent, highest rates of sedimentation of about 140 μg m−2 d−1 were recorded in spring 1994. As reported in related investigations, the transient accumulation of DOC in surface waters during summer, as well as respiration and mortality of deep overwintering zooplankton stocks, appeared to dominate the fate of photosynthetically fixed organic carbon. The above processes may account for roughly 43 g C m−2 in the upper 200 m of the central Greenland Sea. For comparison, the seasonal deficit in dissolved inorganic carbon was reported to be about 23 g C m−2 in the upper 20 m of surface water, and estimates for new annual production were reported to be about 57 g C m−2. In our investigation, the biological carbon pump was not unusually effective in transporting carbon out of the productive surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号