首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Concentrations of selected heavy metals (Cr, Cu, Ni, Pb and Zn) from surface sediments, suspended particulate matter and settling particles in the southern Barcelona continental margin were studied in order to evaluate the environmental impact of the anthropogenic metals discharged by the Llobregat River in this Mediterranean area. The temporal variation of heavy metals discharged by this river onto the continental shelf is clearly related to the river water flow. Part of the fine sediment and associated heavy metals transported by the Llobregat River during periods of low river flow accumulate on the river bed, and they are totally removed and discharged onto the Barcelona continental shelf during sporadic river water flow increases. Metals produce significant anomalies of chromium (×2.5), copper (×3.4) and zinc (×3.7) in the surface sediments of the Llobregat prodelta and tend to be transported along the continental shelf following the mean flow. Metals associated with the finest suspended flocs transferred to the slope are controlled by the shelf-slope density front and are transported along slope by the general geostrophic current, instead of accumulating and becoming concentrated in the slope bottom sediments. Settling particulate matter collected in sediment traps on the Barcelona continental slope offshore of the shelf-slope front shows low heavy metal concentrations except in a few sediment trap samples that are significantly metal-enriched in chromium (×4.5) and zinc (×6.8). This enrichment is associated with very short and sporadic river flow increases and is only recorded inside the Foix submarine canyon, which acts as a preferential conduit for the shelf-slope sediment transfer.  相似文献   

2.
A simple model with horizontal and vertical diffusivities and settling velocity is used to calculate expected distributions of suspended particulate matter in a section across the continental shelf and slope. Dependencies on the shelf and slope profile, diffusivities, settling velocity, cross-slope advection and boundary sources/sinks are explored. It is found that the strongest factors are relative values of diffusivities and settling velocity, and the distribution of sources and sinks – including bottom deposition or resuspension. The latter is the principal means whereby an increased concentration near the bottom is likely, and is suggested as the usual reason for increased deposition recorded by sediment traps nearer the bottom. Observed thin, near-horizontal intermediate nepheloid layers put bounds on the vertical diffusivity and settling velocity, e.g. O(10-4 m2 s-1, 10-5 m s-1) over Goban Spur in OMEX.  相似文献   

3.
A one year study of downward particle fluxes conducted in the northwestern Mediterranean Sea is presented. Two mooring lines equipped with sediment traps and current meters were deployed at around 1000 m depth on the northeastern continental slope of the Gulf of Lions, one inside the Grand-Rhône canyon and the other outside on the adjacent open slope. Mean total mass fluxes increased slightly with trap depth inside the canyon, a feature quite typical of fluxes in continental margin environments. The near-bottom trap inside the canyon collected more material than its counterpart deployed at equivalent depth on the open slope, indicating a preferential transport of material within the canyon. Major biogeochemical constituents (organic and inorganic carbon, opal, and siliciclastic residue) revealed a marked difference in particle composition between the sub-surface (80 m) and deeper traps, suggesting the existence of at least two sources of material. The two shallower traps showed a clear biological signal: flux peaks were related to periods of surface biological production, especially perceptible in summer and autumn. The particulate matter trapped at deeper levels in the canyon and on the open slope was characterized by a more stable composition with a major lithogenic contribution, originating from sedimentary material most probably resuspended on the upper- or mid-slope. The seasonal variability was dominated by the summer/winter alternation; the latter period was characterized by a weak stratification of the water column and an enhanced current variability favoring vertical exchanges. The present results are compared with those obtained previously in the Lacaze-Duthiers canyon on the southwestern side of the Gulf of Lions. The comparison shows strong differences between the NE entrance and the SW exit of the gulf, with respect to the general along-slope circulation of water masses, both in terms of intensity of particulate fluxes and transport processes.  相似文献   

4.
AVHRR/NOAA-11 satellite images of the C1 (580–680 nm) and C2 (725–1100 nm) channels were used to quantify the suspended particulate matter discharged into the ocean by the Gironde estuary (France). The calibration method is based on a comparison between satellite values (AVHRR reflectances) and suspended particulate matter (SPM) concentrations at the sea surface, measured in situ. To correct the aerosol variations a C1-C2 image subtraction is applied. However, when the SPM concentration is greater than about 15 mg l−1, the C2 channel image is affected by water turbidity and the C1-C2 correction cannot be used. The C1 channel is more sensitive, and we were able to distinguish SPM concentration variations greater than 0.5 mg l−1. A subtraction of two images recorded with a 24 h interval was carried out to evaluate vertical and horizontal fluxes. The residual image shows the quantity of particles leaving the surface layer. To assess horizontal displacements, turbid fronts were mapped by means of an image gradient analysis. Major and minor fronts recorded each day, superimposed to outline displacements (gradients and orientations), were displaced from the Gironde estuary to the West and the Northwest.During the ECOFER cruises (1989–1991), several AVHRR scenes were processed using an atmospheric correction based on the low SPM concentrations (“ocean pixel subtraction”). Generally, surface particulate matter is confined to the inner continental shelf. Higher values were observed during the ECOFER 4 cruise. Suspended particulate matter concentrations with the maximum extension appeared during the ECOFER 1 cruise. Concentrations were very low during the ECOFER 5 cruise, even in the lower estuary. This was due to low summer discharges that occurred during the dry period of 1988–1991 in France. During these surveys, estimated SPM concentrations were less than 1.5 mg l−1 in the ECOFER area.  相似文献   

5.
Spatial and temporal characteristics of the water masses and the dispersion of the suspended particulate matter were investigated using current meter, hydrographic and nephelometric observations, gathered during the ECOFER experiment (1989–1991) in the Cap-Ferret Canyon on the Aquitanian margin of the Bay of Biscay. While characteristics of the deep water masses were stable from one year to another, large hydrographic change in the upper 500 m related to winter renewal induced by poleward advection of warm and saline water along the continental slope. The slope circulation and seasonal eddy activity appear as important dynamical mechanisms that control the entrainment and the dispersion of the suspended particulate matter from the neritic domain to the deep ocean. A predominantly northward along-slope current with occasional reversal characterizes this circulation. The nephelometric structures also showed seasonal changes in the overall suspended particulate matter content, but recurrent features, such as the presence of intermediate nepheloid layers at the shelf-break depth and various depths along the slope (∼500, 1000 and 2000 m), were observed. These nepheloid layers extended off the slope to about 10–30 km, but especially laterally along the slope. Their presence indicated that suspended particulate matter exchanges between the shelf and the slope occurred mainly in the head of the canyon and along the southern open slope. The intermediate nepheloid layers around 500 m depth detached from the slope particularly in regions where the bottom slope is close to critical for the M2 internal tide.  相似文献   

6.
Boundary currents and internal waves determine cross-slope zonation of erosion and deposition in the Faeroe-Shetland Channel. Currents were measured at 8 and 34–50 m above the bottom at three mooring sites (502, 595 and 708 m depth) for 14 days. The structure of the water column was evaluated from CTD sections, and included nepheloid layers and particulate matter concentrations. Indicators for recent deposition in the sediment (organic carbon, phytopigments, 210Pb) were measured at eight stations across the slope. Strong near-bottom currents at the upper slope sustain down-slope particle transport in a benthic nepheloid layer, which is eroded under the influence of critically reflecting M2 internal tidal waves at 350–550 m, where the major pycnocline meets the sloping bottom. Beam attenuation profiles confirmed the presence of intermediate nepheloid layers intruding into the Channel along the major pycnocline, and elevated concentrations of particulate matter and chlorophyll-a were measured at this depth. Near-bottom currents decreased with depth, thus allowing particle deposition down the slope. Inventories of excess 210Pb activity in the sediment deeper than 600 m were higher than what was expected on the basis of atmospheric input of 210Pb and production in the water column, thus indicating additional lateral inputs. Simple calculations showed that off-slope input of particles from areas shallower than 600 m may be responsible for the enhanced deposition at greater depths.  相似文献   

7.
The natural isotope 234Th is used in a small-scale survey of particle transport and exchange processes at the sediment–water interface in the Benguela upwelling area. Results from water and suspended particulate matter (SPM) samples from the uppermost and lowermost water column as well as the underlying sediment of three stations are compared. The stations are situated in different sedimentological environments at 1200–1350 m water depth at the continental slope off Namibia. Highly differing extent and particle content of the bottom nepheloid layer (BNL) are determined from transmissometer data. Three models are presented, all explaining the 234Th depletion of the BNL and 234Th excess of the surface sediment that were observed. While the first model is based solely on local resuspension of surface sediment particles, the second evaluates the influence of vertical particle settling from the surface waters on the 234Th budget in the BNL. The third model explains 234Th depletion in the BNL by sedimentation of particles that were suspended in the BNL during long-range transport. Particle inventory of the BNL is highest at a depocenter of organic matter at 25.5°S, where strong deposition is presently taking place and lateral particle transport is suggested to predominate sediment accumulation. This is supported by the high settling flux of particles out of the BNL into the sediments of the depocenter, exceeding the vertical particle flux into sediment traps at intermediate depth in the same area by up to an order of magnitude. High particle residence/removal times in the BNL above the depocenter in the range of 5–9 weeks support this interpretation. Comparison with carbon mineralization rates that are known from the area reveals that, notwithstanding the large fraction of advected particles, organic carbon flux into the surface sediment is remineralized to a large extent. The deployment of a bottom water sampler served as an in situ resuspension experiment and provided the first data of 234Th activity on in situ resuspended particles. We found a mean specific activity of 86 disintegrations per minute (dpm) g−1 (39–339 dpm g−1), intermediate between the high values for suspended particles (in situ pump: 580–760 dpm g−1; CTD rosette: 870–1560 dpm g−1) and the low values measured at the sediment surface (26–37 dpm g−1). This represents essential information for the modeling of 234Th exchange processes at the sediment–water interface.  相似文献   

8.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

9.
Climatological, current and particulate flux data were gathered in the Grand-Rhône canyon on the Gulf of Lions continental margin for one year (Jan. 1988–Jan 1989). Time series were analyzed to determine the influence of physical exchange processes on particulate matter at the shelf-edge, with a special emphasis on the Northern Current variability.The synoptic variability of the Northern Current was linked to meanders of 2–5 day period. Its meso-scale activity presented a seasonal signal with maximum values in early spring. Peaks of particulate fluxes in the upper traps were little affected by large river and atmospheric inputs, but rather by enhanced shelf-slope exchanges at the shelf edge due to intense cross-slope fluctuations of the Northern Current. These fluctuations caused cross-isobath flows near the bottom, which appeared to be a potential mechanism in transporting particles off the shelf. At 900 m depth, high-flux events measured by sediment traps were primarily linked to periods of higher cross-slope current oscillations. This correlation suggests that vertical motions caused by these oscillations contribute to the suspended particulate matter transport through the process of bringing higher suspended material concentrations from above to greater depths. Vertical velocity estimates were derived through temperature fluctuations combined with vertical temperature gradient and from the kinematic boundary condition. A simple diffusion model indicates that the vertical turbulent mixing of suspended particulate matter, induced by the cross-slope current oscillations, yields downward fluxes of particles comparable to those collected by sediment traps.  相似文献   

10.
Activities of dissolved, particulate, and sedimentary 210Pb were measured in the shelf-slope region of the Chukchi Sea. Samples were collected as part of the Shelf–Basin Interactions (SBI) Phase II process study (6 May–15 June, 2002) along three shelf–basin transects identified as West Hanna Shoal, East Hanna Shoal, and Barrow Canyon. Distributions of 210Pb and suspended particulate matter indicate efficient removal of 210Pb over the shelf by particle scavenging. Low 210Pb activities measured throughout the halocline of the Canada Basin are attributed to shelf scavenging and subsequent advective transport into the interior basin. Additionally, 210Pb inventories were used to construct a water-column-sediment budget of 210Pb and determine regions of particle export and deposition on the continental shelf and slope. Sediment focusing calculated with this 210Pb budget was observed throughout the shelf-slope region, particularly in shallow (∼100 m) shelf waters at Barrow Canyon. Despite elevated concentrations of suspended particulate matter in Barrow Canyon, the 210Pb budget does not indicate that sediment transport occurred from the West and East Hanna Shoals into Barrow Canyon.  相似文献   

11.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

12.
Samples collected in the deep Nazaré Canyon and at the adjacent slope, during the HERMES RRS Discovery D297 cruise (2005), were analysed for metazoan meiofauna, nematode structure and diversity and its relation to quality and quantity of sedimentary organic material. The amount and quality of organic matter available for direct consumption was much higher in the canyon compared to the slope and positively correlated with high nematode abundances (795–1171 ind. 10 cm?2) and biomass (93.2–343.5 μg dry weight 10 cm?2), thus leading to higher standing stocks. Canyon nematode assemblages also showed particular adaptations (e.g. higher trophic complexity, variability of nematode morphology, and presence of opportunistic genera) to canyon conditions, particularly in the deeper sediment layers. The Nazaré Canyon's nematode diversity was slightly lower than that of the adjacent slope and its assemblages were characterised by a higher dominance of certain genera. Still, the canyon contributes considerably to total Western Iberian Margin diversity due to different assemblages present compared to the slope. Furthermore, the harsh conditions in terms of hydrodynamic disturbance and the high organic matter flux are likely to have a negative impact on the establishment of species rich meiobenthic communities, especially in the canyon axis.  相似文献   

13.
The abundance, carbon isotopic composition (Δ14C and δ13C), and lipid biomarker (alkenones and saturated fatty acids) distributions of suspended particulate organic matter were investigated at three stations centered on the 2000, 3000, and 3500 m isobaths over the New England slope in order to assess particulate carbon sources and dynamics in this highly productive and energetic region. Transmissometry profiles reveal that particle abundances exhibit considerable fine structure, with several distinct layers of elevated suspended particulate matter concentration at intermediate water depths in addition to the presence of a thick bottom nepheloid layer at each station. Excluding surface water samples, the Δ14C values of particulate organic carbon (POC) indicated the presence of a pre-aged component in the suspended POC pool (Δ14C<+38‰). The Δ14C values at the 3000 m station exhibited greater variability and generally were lower than those at the other two stations where the values decreased in a more systematic matter with increasing sampling depth. These lower Δ14C values were consistent with higher relative abundances of terrigenous long-chain fatty acids at this station than at the other two stations. Two scenarios were considered regarding the potential provenances of laterally transported POC: cross-shelf transport of shelf sediment (Δ14C=?140‰) and along-slope transport of the slope sediment proximal to the sampling locations (Δ14C=?260‰). Depending on the scenario, isotopic mass balance calculations indicate allochthonous POC contributions ranging between 15% and 54% in the meso- and bathy-pelagic zone, with the highest proportions at the 3000 m station. Alkenone-derived temperatures recorded on suspended particles from surface waters closely matched in-situ temperatures at each station. However, alkenone-derived temperatures recorded on particles from the subsurface layer down to 250 m were lower than those of overlying surface waters, especially at the 3000 m station, implying supply of phytoplankton organic matter originally produced in cooler surface waters. AVHRR images and temperature profiles indicate that the stations were under the influence of a warm-core ring during the sampling period. The low alkenone-derived temperatures in the subsurface layer coupled with the lower Δ14C values for the corresponding POC suggests supply of OC on resuspended sediments underlying cooler surface waters distal to the study area, possibly further north or west. Taken together, variations in Δ14C values, terrigenous fatty acid abundances, and alkenone-derived temperatures among the stations suggest that input of laterally advected OC is a prominent feature of POC dynamics on the NW Atlantic margin, and is spatially heterogeneous on a scale smaller than the distance between the stations (<150 km).  相似文献   

14.
A 2-yr record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean. Particle fluxes, of ∼71–78% biogenic origin (i.e. consisting of CaCO3, organic matter and opal) on average, decrease about six-fold from the mesotrophic site (highest fluxes in the North Atlantic) nearer the Mauritanian margin (18°30′N, 21°00′W) to the remote, open-ocean, oligotrophic site (21°00′N, 31°00′W). This decrease largely reflects the difference in total primary production between the two sites, from ∼260 to ∼110 g organic C m−2 yr−1. At both sites, temporal variability of the downward particle flux seems to be linked to westward surface currents, which are likely to transport seaward biomass-rich water masses from regions nearer the coast. The influence of coastal upwelling is marked at the mesotrophic site. The large differences between the 1991 and 1992 records at that site, where carbon export is large, underscore the interest of long-term studies for export budget estimates. The different productivity regimes at the two sites seem to induce contrasting downward modes of transport of the particulate matter, as shown in particular by the faster settling rates and the higher E ratio (particulate organic carbon export versus total primary production) estimated at the mesotrophic site.  相似文献   

15.
Benthic fluxes of O2, titration alkalinity (TA), total inorganic carbon (TIC), Ca2+, NO3, NH4+, PO43−, and Si(OH)4 were measured by in situ benthic flux chamber incubations at 13 locations on the North Carolina continental slope. The majority of measurements were made at water depths of approximately 700–850 m, in the previously identified upper slope depocenter. This region is characterized by extremely high organic matter deposition rates and near saturation bottom water oxygen concentrations. Measured benthic fluxes of TA are reasonably correlated with O2 benthic fluxes. Because bottom waters are supersaturated with respect to calcite and aragonite at these shallow water depths, these results demonstrate the importance of metabolically driven dissolution in this region. Subtraction of the calcium carbonate dissolution contributions from the TIC benthic fluxes suggests rates of organic matter remineralization ranging from 0.97 to 3.9 mol C m−2 yr−1 at the depocenter sites, a factor of 3–10 greater than estimated for the adjacent continental rise and upper slope areas. Because biological primary production in the overlying waters does not follow this pattern, these extremely high values are most likely supported by lateral inputs of highly reactive organic matter. Mass balance calculations indicate that despite the oxygenated bottom water conditions, 68% of the organic nitrogen released during organic matter remineralization processes is ultimately denitrified. The release of PO43− from the depocenter sediments is equivalent to or larger than that predicted from the remineralization of Redfield organic matter. This implies either that PO43− is preferentially released in this setting and that the accumulating sediments must be depleted in PO43− relative to organic carbon or that another, non-organic, phase is contributing PO43− to the system. The molar ratio of the Si benthic flux and organic carbon remineralization rate ranges from 0.30 to 0.86. This is significantly greater than the ratio reported for most pelagic diatoms. Possible reasons for this high ratio include the deposition of benthic diatoms that may have a larger Si : C ratio than pelagic diatoms, the near-bottom lateral input of partially reworked organic matter that may have an elevated Si : C ratio relative to fresh diatoms, preferential loss of carbon in sinking particulates or the release of Si from non-opaline materials.  相似文献   

16.
With the aim of improving the knowledge of the open ocean carbon cycle, we present a budget of particulate organic carbon (POC) fluxes carried out in the deep central part of the Algero-Balearic Basin (ABB) at 2850 m water depth based on a single mooring equipped with five automated sediment traps deployed from April 2001 to May 2002 at depths of 250, 845, 1440, 2145 and 2820 m. Suspended particulate matter (SPM) and superficial sediments were also used as indicators of hydrodynamics and carbon burial, respectively. The data reveal that the fraction of primary production buried in the sediment, which finally leads to the sequestration of carbon dioxide from the atmosphere, is 0.16%, lower than the values found in the nearby continental margin regions such as the Alboran Sea (0.48–0.89%) but of the same order as recorded at other Mediterranean sites at similar depths, such as the Ionian Sea (0.11%). As they sink through the water column, the particles exhibit decreases in flux that are similar to those observed elsewhere, but also show variations that appear to correlate with hydrological features of the water masses present in the basin, as revealed by SPM concentrations and compositions. The input of the tyrrhenian deep water (TDW) into the ABB at 800–1500 m of water depth exhibits low suspended POC concentrations and low sinking POC fluxes were also observed in this depth range. Gulf of Lions water mass formation appears to also contribute to elevated suspended POC concentrations and perhaps POC accumulation in the traps and sediments by spreading of dense cold water along the whole ABB that supplied POC at depths higher than 2000 m.  相似文献   

17.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

18.
Between 1988 and 1994, twenty time-series sediment traps were deployed at different water depths in the Canary Island region, off Cape Blanc (Mauritania), and off Cape Verde (Senegal). Lithogenic particle fluxes and grain size distributions of the carbonate-free fraction of the trapped material show a high impact of dust transported either in the northeast trade winds or the Saharan Air Layer (SAL). Highest annual mean lithogenic fluxes (31.2–56.1 mg m-2 d-1) were observed at the Cape Blanc site, and largest annual mean diameters (>6 μm) were found off Cape Verde (14.5–16.9 μm) and off Cape Blanc (15.2–16.7 μm). Lowest annual lithogenic fluxes (11.4–21.2 mg m-2 d-1 ) and smallest mean diameters (13.5–13.7 μm) occurred in the Canary Island region. A significant correlation of organic carbon and lithogenic fluxes was observed at all sites. Off Cape Blanc, fluxes and mean diameters correlated well between upper (around 1000 m depth) and lower traps (around 3500 m depth), indicating a fast and mostly undisturbed downward transport of particulate matter. In contrast, a major correlation of fluxes without correlating mean diameters occurred in the Canary Island region, which translates into a fast vertical transport plus scavenging of laterally advected material with depth at this site. The seasonality of lithogenic fluxes was highest in the Canary Island region and off Cape Verde, reflecting strong seasonal patterns of atmospheric circulation, with highest occurrence of continental winds in the trade wind layer during winter. In addition, grain size statistics reflect a dominant change of dust transport in the trade winds during winter/spring and transport in the SAL during summer 1993 at the Cape Verde site. Highest lithogenic fluxes during winter were correlated with mean diameters around 10–13 μm, whereas lower fluxes during summer consisted of coarse grains around 20 μm. Annual mean dust input wascalculated from lithogenic fluxes in the range 0.7×106–1.4×106 t yr-1, roughly confirming both sediment accumulation rates and atmospheric model calculations reported previously from this area.  相似文献   

19.
Very large subaqueous sand dunes were discovered on the upper continental slope of the northern South China Sea. The dunes were observed along a single 40 km long transect southeast of 21.93°N, 117.53°E on the upper continental slope in water depths of 160 m to 600 m. The sand dunes are composed of fine to medium sand, with amplitudes exceeding 16 m and crest-to-crest wavelengths exceeding 350 m. The dunes' apparent formation mechanism is the world's largest observed internal solitary waves which generate from tidal forcing on the Luzon Ridge on the east side of the South China Sea, propagate west across the deep basin with amplitudes regularly exceeding 100 m, and dissipate extremely large amounts of energy via turbulent interaction with the continental slope, suspending and redistributing the bottom sediment. While subaqueous dunes are found in many locations throughout the world's oceans and coastal zones, these particular dunes appear to be unique for two principal reasons: their location on the upper continental slope (away from the influence of shallow-water tidal forcing, deep basin bottom currents and topographically-amplified canyon flows), and their distinctive formation mechanism (approximately 60 episodic, extremely energetic, large amplitude events each lunar cycle).  相似文献   

20.
As part of the multidisciplinary programme BIOZAIRE devoted to studying deep-sea benthic ecosystems in the Gulf of Guinea, particulate input and its relationship with near-bottom hydrodynamics were monitored using long-term moorings from 2000 to early 2005. Particular attention was given to material input through the Congo (ex-Zaïre) submarine channel that extends 760 km from the Congo River mouth to the abyssal plain (>5100 m) near 6°S. Due to its direct connection to the Congo River, the Congo canyon and channel system are characterised by particularly active recent sediment transport. During this first in situ long-term monitoring along the channel, an energetic turbidity event was observed in January 2004 at three locations along the channel from 3420 to 4790 m in depth. This event tilted and displaced the moorings installed at 3420 m (site ZR′) and 4070 m (site ZD′), and resulted in high sediment deposition at all three mooring sites. The event moved at an average velocity of 3.5 m s−1 along the numerous channel meanders between 3420 and 4070 m, then at 0.7 m s−1 between 4070 m and the end of the channel at 4790 m. The particle cloud rose above the top of the valley at 4070 m (site ZD′), but not at 3420 m (site ZR′) where the channel was too deep. Lastly, the mooring line broke at site ZD′ in October 2004 probably due to a strong event like that of 2001 previously described by Khripounoff et al. [Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Denniellou, B., Savoye, B., 2003. Direct observation of intense turbidity activity in the Zaire submarine valley at 4000 m water depth. Marine Geology (194), 151–158]. Between these strong events, several peaks of high turbidity and particle flux occurred, but without noticeable current increases. These events were probably due to local sliding of sediment accumulated on the walls or terraces on the side of the channel. The area near 4000 m depth and the lobe appear to be the main depocentres of particulate input rich in organic matter derived from the Congo River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号