首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ground penetrating radar (GPR) survey was conducted in the Wushanting mud volcano field (Yanchao, Kaohsiung) using a 500 MHz antennae, which allowed high-resolution imaging of subsurface structures. Seven GPR reflection characteristics are recognized. Sigmoid GPR reflection patterns resulted from a recent mud lobe deposited above an underlying older mud lobe front. Contorted GPR facies resulted from recent mud flow which encountered obstacles. Subparallel reflections resulted from mud volcano deposits of limited flowability, low velocity and gentle gradient. Hummocky reflection patterns are formed by interfingering of recent mud lobes building onto low land. Disrupted GPR facies were due to lateral breaks of continuity from mud cracks, which, according to field observation, can provide channels for erosion and form deeper erosion gullies. GPR time slices of different depths are rendered as a three-dimensional model. Approximately orbicular GPR reflection characteristics can indicate arcuate stacked mud lobe fronts of different periods. Some depositional models to explain GPR reflection characteristics can be founded upon observations of recent sedimentary phenomena. The models of this study may be applied to paleoenvironments and the depositional evolution of mud volcanoes in similar geological settings.  相似文献   

2.
Ground penetrating radar (GPR) survey was conducted in the Wushanting mud volcano field (Yanchao, Kaohsiung) using a 500 MHz antennae, which allowed high-resolution imaging of subsurface structures. Seven GPR reflection characteristics are recognized. Sigmoid GPR reflection patterns resulted from a recent mud lobe deposited above an underlying older mud lobe front. Contorted GPR facies resulted from recent mud flow which encountered obstacles. Subparallel reflections resulted from mud volcano deposits of limited flowability, low velocity and gentle gradient. Hummocky reflection patterns are formed by interfingering of recent mud lobes building onto low land. Disrupted GPR facies were due to lateral breaks of continuity from mud cracks, which, according to field observation, can provide channels for erosion and form deeper erosion gullies. GPR time slices of different depths are rendered as a three-dimensional model. Approximately orbicular GPR reflection characteristics can indicate arcuate stacked mud lobe fronts of different periods. Some depositional models to explain GPR reflection characteristics can be founded upon observations of recent sedimentary phenomena. The models of this study may be applied to paleoenvironments and the depositional evolution of mud volcanoes in similar geological settings.  相似文献   

3.
Twelve ground penetrating radar (GPR) experiments were conducted on the modern, wave-influenced William River delta, on the Southern shore of Lake Athabasca in northern Saskatchewan, Canada. The delta is a well-sorted, quartzoserich, clean, sand-dominated, water-saturated geomorphic feature which provided an ideal site to test GPR. Penetration depths, resolution and continuity of reflections were compared for different antennae frequencies (25, 50, 100, 200 MHz) and transmitter powers (pulser voltage: 400 V, 1000 V). The data show significant variations in vertical resolution from 0.15 m to 0.76 m (200-25 MHz), depth of penetration from 14 m-28 m (200-25 MHz), and continuity of reflections. Increasing the transmitter power from 400 V to 1000 V increases the depth of penetration by 5 to 14% and improves the continuity of reflections with little effect on the resolution.  相似文献   

4.
5.
GPR study of pore water content and salinity in sand   总被引:5,自引:0,他引:5  
High‐resolution studies of hydrological problems of the near‐surface zone can be better accomplished by applying ground‐probing radar (GPR) and geoelectrical techniques. We report on GPR measurements (500 and 900 MHz antennae) which were carried out on a sorted, clean sand, both in the laboratory and at outdoor experimental sites. The outdoor sites include a full‐scale model measuring 5 × 3 × 2.4 m3 and a salinity site measuring 7.0 × 1.0 × 0.9 m3 with three buried sand bodies saturated with water of various salinities. Our studies investigate the capability of GPR to determine the pore water content and to estimate the salinity. These parameters are important for quantifying and evaluating the water quality of vadose zones and aquifers. The radar technique is increasingly applied in quantifying soil moisture but is still rarely used in studying the problems of water salinity and quality. The reflection coefficient at interfaces is obtained from the amplitude spectrum in the frequency and time domains and is confirmed by 1D wavelet modelling. In addition, the GPR velocity to a target at a known depth is determined using techniques of two‐way traveltime, CMP semblance analysis and fitting an asymptotic diffraction curve. The results demonstrate that the reflection coefficient increases with increasing salinity of the moisture. These results may open up a new approach for applications in environmental problems and groundwater prospecting, e.g. mapping and monitoring of contamination and evaluating of aquifer salinity, especially in coastal areas with a time‐varying fresh‐water lens. In addition, the relationship between GPR velocity and water content is established for the sand. Using this relationship, a subsurface velocity distribution for a full‐scale model of this sand is deduced and applied for migrated radargrams. Well‐focused diffractions separate single small targets (diameter of 2–3 cm, at a depth of 20–180 cm and a vertical interval of 20 cm). The results underscore the high potential of GPR for determining moisture content and its variation, flow processes and water quality, and even very small bodies inside the sand or soil.  相似文献   

6.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a palaeo-storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Natural soil pipes are common and significant in upland blanket peat catchments yet there are major problems in finding and defining the subsurface pipe networks. This is particularly important because pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yields. Traditional methods such as digging soil pits are destructive and time‐consuming (particularly in deep peat) and only provide single point sources of information. This paper presents results from an experiment to assess the use of ground‐penetrating radar (GPR) to remotely sense pipes in blanket peat. The technique is shown to be successful in identifying most of the pipes tested in the pilot catchment. Comparison of data on pipes identified by GPR and verified by manual measurement suggests that pipes can be located in the soil profile with a depth accuracy of 20 to 30 cm. GPR‐identified pipes were found throughout the soil profile; however, those within 10–20 cm of the surface could not be identified using the 100 or 200 MHz antennae due to multiple surface reflections. Generally pipes smaller than 10 cm in diameter could not be identified using the technique although modifications are suggested that will allow enhanced resolution. Future work would benefit from the development of dual‐frequency antennae that will allow the combination of high‐resolution data with the depth of penetration required in a wetland environment. The GPR experiment shows that pipe network densities were much greater than could be detected from surface observation alone. Thus, GPR provides a non‐destructive, fast technique which can produce continuous profiles of peat depth and indicate pipe locations across survey transects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In order to improve the reliability of the ground penetrating radar (GPR) method in identifying subsurface sinkholes and karst cavities, laboratory investigations have been performed. The main objective of this work was to examine the relationship between horizontal/vertical voids dimensions and wavelengths of various antennas, and the corresponding GPR responses. Emphasis was given to the investigation of the factors that cause the appearance of reverberation phenomena in the signal pattern.The tests were conducted in 5 m × 10 m area by 2-m-deep trench filled with homogenous, dry sand. The voids models (empty fiberglass cylinders in diameters of 0.6 m, 1.0 m, 1.5 m and 2.4 m, with various heights) were buried vertically with their tops at depths of between 0.7 and 1.5 m. Investigations were performed for the various model conditions by towing 500, 300 and 100 MHz antennas along a pre-established grid, for the various model conditions.The GPR data collected using the 500 MHz bistatic antenna above the 1.0-m- and the 1.5-m-diameter cylinders, and using the 300 MHz bistatic antenna above the 1.5-m-diameter cylinder, confirmed the presence of a reverberation phenomenon, i.e. a strong convex signal pattern, containing a series of high amplitude extending oscillations with reduced frequency.Based on past practical GPR experience of void detection and presently obtained experimental data, two rules of thumbs may be adopted for the prediction of the appearance of resonant radar pictures:
1. The void diameter larger than the wavelength in air of the antenna used.
2. The vertical size of the empty void not significantly smaller than its horizontal dimension.
The strong reverberations generated by the inner surface of the void targets were found to approximate standing waves generated in cylindrical waveguides and waveguide resonators. The theoretical, experimental and practical results obtained concur.  相似文献   

10.
The amplitude spectrum of ground penetrating radar (GPR) reflection data acquired with a particular antenna set is normally concentrated over a spectral bandwidth of a single octave, limiting the resolving power of the GPR wavelet. Where variously-sized GPR targets are located at numerous depths in the ground, it is often necessary to acquire several profiles of GPR data using antennas of different nominal frequencies. The most complete understanding of the subsurface is obtained when those frequency-limited radargrams are jointly interpreted, since each frequency yields a particular response to subsurface reflectivity. The application of deconvolution to GPR data could improve image quality, but is often hindered by limited spectral bandwidth.We present multiple-frequency compositing as a means of combining data from several frequency-limited datasets and improving the spectral bandwidth of the GPR profile. A multiple-frequency composite is built by summing together a number of spatially-coincident radargrams, each acquired with antennae of different centre frequency. The goal of the compositing process is therefore to produce a composite radargram with balanced contributions from frequency-limited radargrams and obtain a composite wavelet that has properties approximating a delta function (i.e. short in duration and having a broad, uniform spectral bandwidth).A synthetic investigation of the compositing process was performed using Berlage wavelets as proxies for GPR source pulses. This investigation suggests that a balanced, broad bandwidth, effective source pulse is obtained by a compositing process that equalises the spectral maxima of frequency-limited wavelets prior to summation into the composite. The compositing of real GPR data was examined using a set of 225, 450 and 900 MHz GPR common offset profiles acquired at a site on the Waterloo Moraine in Ontario, Canada. The most successful compositing strategy involved derivation of scaling factors from a time-variant least squares analysis of the amplitude spectra of each frequency-limited dataset. Contributions to the composite from each nominal acquisition frequency are clear, and the trace averaged amplitude spectrum of the corresponding composite is broadened uniformly over a bandwidth approaching two-octaves. Improvements to wavelet resolution are clear when a composite radargram is treated with a spiking deconvolution algorithm. Such improvement suggests that multiple-frequency compositing is a useful imaging tool, and a promising foundation for improving deconvolution of GPR data.  相似文献   

11.
The application of the ground penetrating radar (GPR) at two archaeological sites, Serrano and Morro Grande, situated in Araruama County, Rio de Janeiro, Brazil, aids the study of a prehistoric indigenous culture, associated with the “Tupinambá” that inhabited the region during prehistoric times.The archaeological remains of the study area are mainly characterized by pottery artifacts for several uses, including funerary urns, which were buried within layers of sand and clay. Several profiles were acquired using a RAMAC system, with a 200 and 400 MHz frequency antennae. At the Serrano site, the profiles were acquired around some partially exposed pottery shards, due to sand exploitation. The resultant profiles provided a response model to guide the interpretation of new profiles acquired at other sites in the area, which present similar characteristics.The results showed the great importance of the dielectric permittivity contrast which exists between the targets and the host media, in order for possibly significant features to be identified in radar data.  相似文献   

12.
The applicability of ground‐penetrating radar (GPR) for the investigation of loose debris was tested at two sites (Viererkar and Zugspitzplatt). A pulseEKKO 100 GPR system equipped with 25 MHz antennae was utilized. The aim of the investigation was to record the base of the debris layer, and thereby acquire an estimation of the backweathering rates of the adjacent rockwalls. The study areas are situated in the Northern Alps near the German–Austrian border. The sites are characterized by steep limestone rockwalls and extensive talus accumulations. A total of six profiles was surveyed. The method is suitable and effective for a quick survey in this dry, high‐ohmic substrate. The GPR system was able to deliver information about the subsurface stratigraphy to c. 70 m depth. The boundary line to the bedrock was discovered – depending upon the profile surveyed ?5 to 25 m below the surface. The base of the debris material sometimes shows no distinct reflection. Buried features (V‐shaped furrows, zones overdeepened by ice action, geological structures) could be detected. Arched structures well below the talus–bedrock interface can be interpreted as drainage systems in the karstic bedrock. A thick scree layer of Late Glacial age was separated from a thinner layer on the talus surface, which was related to the Holocene. The backweathering rates were fixed by a calculation of talus volume to c. 100 mm/103 a during the Holocene (Viererkar) and 150–300 mm/103 a (Zugspitzplatt). The detrital formation in north‐exposed sites is twice as intense as in south‐exposed sites. These results match the rates of recent rockfall in the same area of investigation. The calculated backweathering for the late glacial period is 150–730 mm/103 a. The magnitude of the calculated rockwall retreat lies well within the range of previous measurements. The discrepancy between some weathering rates highlights the fact that recent and past relief formation must be differentiated. Otherwise recent removal rates may be overestimated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel–sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel–sand and clay–silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.  相似文献   

14.
Abstract Ground penetrating radar (GPR) and high‐resolution shallow reflection seismic surveying were carried out to investigate the subsurface geology in and around the Uemachi Fault zone in the Yamato River area, Osaka, Japan. Shallow drilling in the area showed a major displacement event during the middle Pleistocene. The main Uemachi Fault plane could be clearly imaged on the seismic section, except for the most shallow 200 m. Several shallow normal fault planes with less displacement could be detected on both sides of the fault plane. GPR profiles confirmed the presence of several shallow normal faults within the area near the fault zone. These shallow faults could be followed in all of the GPR profiles crossing the fault zone. The integration of seismic section, GPR profiles and drilling data led to a conceptual model that explains the evolution of the Uemachi Fault system. The proposed model suggests the occurrence of several cycles of small vertical displacement along the deep part of the fault plane caused by the regional east–west compressional stress. The ductile nature of the shallow sedimentary cover and the absence of confining pressure in the shallow part allow for a considerable amount of plastic bending before failing in the shallow sedimentary layers. This bending generates stretching force within the shallow sedimentary cover, which in time, along with gravitational force, gives rise to the formation of the swarm of normal faults within the shallow layers near the fault zone. Some of the detected faults extend to a depth of less than 3 m below the ground surface, suggesting that the last tectonic activity along the fault plane may have occurred recently.  相似文献   

15.
GPR (Ground Penetrating Radar) results are shown for perpendicular broadside and parallel broadside antenna orientations. Performance in detection and localization of concrete tubes and steel tanks is compared as a function of acquisition configuration. The comparison is done using 100 MHz and 200 MHz center frequency antennas. All tubes and tanks are buried at the geophysical test site of IAG/USP in São Paulo city, Brazil. The results show that the long steel pipe with a 38-mm diameter was well detected with the perpendicular broadside configuration. The concrete tubes were better detected with the parallel broadside configuration, clearly showing hyperbolic diffraction events from all targets up to 2-m depth. Steel tanks were detected with the two configurations. However, the parallel broadside configuration was generated to a much lesser extent an apparent hyperbolic reflection corresponding to constructive interference of diffraction hyperbolas of adjacent targets placed at the same depth. Vertical concrete tubes and steel tanks were better contained with parallel broadside antennas, where the apexes of the diffraction hyperbolas better corresponded to the horizontal location of the buried target disposition. The two configurations provide details about buried targets emphasizing how GPR multi-component configurations have the potential to improve the subsurface image quality as well as to discriminate different buried targets. It is judged that they hold some applicability in geotechnical and geoscientific studies.  相似文献   

16.
Vertical fractures with openings of less than one centimetre and irregular karst cause abundant diffractions in Ground‐Penetrating Radar (GPR) records. GPR data acquired with half‐wavelength trace spacing are uninterpretable as they are dominated by spatially undersampled scattered energy. To evaluate the potential of high‐density 3D GPR diffraction imaging a 200 MHz survey with less than a quarter wavelength grid spacing (0.05 m × 0.1 m) was acquired at a fractured and karstified limestone quarry near the village of Cassis in Southern France. After 3D migration processing, diffraction apices line up in sub‐vertical fracture planes and cluster in locations of karstic dissolution features. The majority of karst is developed at intersections of two or more fractures and is limited in depth by a stratigraphic boundary. Such high‐resolution 3D GPR imaging offers an unprecedented internal view of a complex fractured carbonate reservoir model analogue. As seismic and GPR wave kinematics are similar, improvements in the imaging of steep fractures and irregular voids at the resolution limit can also be expected from high‐density seismic diffraction imaging.  相似文献   

17.
When fine sediments are present in gravel streambeds (gravel‐framework beds), the gravel can be more easily removed from its original position, compared with gravel in a streambed without fine sediment but otherwise under the same hydraulic conditions. In this study, the effect of the presence of sand on the initiation of gravel motion in gravel riverbeds was investigated using flume experiments. The relationship between the critical Shields stress for gravel motion initiation and the fraction of sand in the bed was determined experimentally. The results can be summarized as follows. (1) When the fraction of sand in the bed is smaller than about 0.4, the critical Shields stress for the initiation of gravel motion decreases with increasing fraction of sand. The critical Shields stress increases, however, with increasing fraction of sand when it is larger than about 0.4. (2) The difference between the value of the critical Shields stress predicted by the Egiazaroff equation and the value obtained from the experimental data becomes maximum at about 0.4 of the fraction of sand. Here an empirical relation between the critical Shields stress and the fraction of sand is proposed so as to consider the effects of the ratio of the characteristic gravel size to the mean size of the bed material on the critical Shields stress. (3) Gravel in armored beds can be more easily mobilized by supplying sand as part of a sediment augmentation scheme. The sand fraction in the subsurface layer of the bed appears to reduce the friction angle of exposed particles. Sediment augmentation using sand has been recently demonstrated to be a viable alternative for mobilizing gravel for the restoration of gravel‐bed rivers downstream of dams. The quantitative evaluation obtained through the experiments reported here may be useful for the design of augmentation schemes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Antidunes and their sedimentary structures can be useful in reconstructing paleo‐hydraulic conditions, especially for large discharge events. However, three‐dimensional (3D) antidunes in sand‐sized sediments have not yet been studied extensively, as compared to either two‐dimensional (2D) antidunes or antidunes in gravel‐sized sediments. In this study, we estimated formative conditions of gravel step‐pool morphologies and applied them to the formation of 3D antidunes over a sand bed. Formative conditions are expressed in terms of a relationship between the water discharge per unit width and the bed slope. Flume experiments demonstrated that 3D mound‐like antidune configurations and their associated internal sedimentary structures could be preserved. Internal sedimentary structures were characterized by shallow lens‐like structures whose bases were erosional. Although gently‐dipping concave‐upward lamination was dominant, convex‐upward lamination was occasionally observed. The dimensions of lenticular lamina‐sets can be used to estimate antidune geometry. Thus if 3D antidunes can be interpreted in the stratigraphic record, it is possible to estimate the paleo‐hydraulic parameters such as water discharge and bed slope more precisely than previously. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Since stratigraphic formation is influenced by tectonic activities and climate since late Pleistocene,it is important to build the stratigraphic sequence to improve the research of active tectonics,climatic change and landform factors.Zoige Basin is located in the eastern edge of Tibet Plateau where the tectonic is active and the Chinese monsoon is strong.The research of stratigraphic sequence is closely related to the tectonic activities and climate changes.Based on 26 typical stratum profiles revealed by lacustrine boreholes,terraces,peat deposits and trenching,203 isotope dating data were obtained by AMS and OSL methods.We conduct a stratigraphic correlation and classification in Zoige Basin since the Late Pleistocene.Sedimentary cycles are divided into six sedimentary rhythms (75~42ka,42~37ka,37~20ka,16~11ka,11~4ka and 4~0ka) and six marker beds (fine sand of 75~55ka and 22~20ka,gray silt deposit or gravel deposit of 13~9ka,black sandy clay containing carbonaceous deposits of 4ka,2ka and 0.3ka).There is a close relation between strata and tectonic-climate.On the one hand,sedimentary cycles coincide with climate change and have a good correspondence with ocean oxygen isotope.On the other hand,sedimentation characteristics is influenced by the persistent activities in neotectonic period of the east Kunlun fault zone on the north side and the Longrize fault zone on the west side.Marker beds and sedimentary cycles are compared with the strata in adjacent areas.It shows that climate change is the main factor affecting sedimentary cycle.The difference of stratum thickness and its spatial distribution is also affected by tectonic activity.  相似文献   

20.
Ground penetrating radar (GPR) has been used as a tool to access information about ground subsurface features. Such information is very important for different types of studies, varying from those related to archeological research to those studying geological elements of bedrock. More recently, however, GPR has been increasingly applied to environmental studies, especially for soil research. This paper presents the results of an application of GPR for the study of weathered profiles. GPR was used to discover the degree of trustworthiness of the information on the ground subsurface through the interpretation of the results of the radar sections as well as the data collected from boreholes, which reached until 21 m. The results show a relatively high degree of details obtained by GPR, indicating the possibility of speeding up ground subsurface surveys related to geomorphological, geological, and pedological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号