首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We analyzed the distribution, diversity, and composition of western Mediterranean macroplankton (excluding gelatinous taxa) in the water column over depths of ca. 550–850 m, with special attention to near-bottom (0–1.5 and ca. 5–77 m above the bottom, mab) levels, and including data from three areas (off the coasts of Catalonia, and to the NW, and SE of Mallorca, Balearic Islands) in the period 1991–2008. Spatio-temporal changes in macroplankton abundance were evaluated as follows: (i) by seasonal sampling in 2007 off the Catalonian coast, (ii) by comparing Catalonian and Balearic Island slopes, and (iii) by comparing a fixed station on the Catalonian slope (at 550–800 m depth) at decadal (1991/1992–2007/2008) time scales. Diversity (in terms of species richness, S) was greater (i) at ca. 5–77 mab than at 0–1.5 mab, (ii) over the insular slopes of the Balearic Island (around Mallorca) than over the mainland Catalonian slopes, and (iii) in the period 1991/1992 than in 2007, likely related to higher values of the North Atlantic Oscillation (NAO) index in 1991/1992. In most analyses species composition was strongly influenced by the degree of stratification and homogenization of the water column in summer–autumn and winter–spring respectively and by location (longitude). Changes consisted mainly of higher density of macroplankton (e.g. abundance of the dominant euphausiids Nematoscelis megalops, Meganyctiphanes norvegica and Euphausia krohni and of the fish Cyclothone braueri) between June and October, parallel to an increase in the T and S close to the bottom. This coincided with changes in the flow of Levantine intermediate water (LIW) in the area. Aggregation of adult forms of the dominant species close to the bottom in summer–autumn could be favored because summer is the period of highest density of food – copepods, mainly Calanus helgolandicus – near the bottom off the Catalan slope. The formation of a thermocline in the water column and the reinforcement of the permanent thermohaline front at the shelf-slope break during summer at ca. 400 m in the Balearic Basin may also enhance this tendency toward greater aggregation of deep macroplankton under stratified water column conditions.  相似文献   

2.
We sampled zooplankton and fecal pellets in the upper 200 m of Monterey Bay and nearby coastal regions in California, USA. On several occasions, we observed high concentrations of large pellets that appeared to be produced during night-time by dielly migrating euphausiids. High concentrations of pellets were found in near-surface waters only when euphausiids co-occurred with high concentrations of large (>10 μm) phytoplankton. Peak concentrations of pellets at mid-depth (100 or 150 m) during the day were consistent with the calculated sinking speeds of pellets produced near the surface at night. At these high flux locations (HI group), pellet concentrations declined below mid-depth. In contrast, at locations where the phytoplankton assemblage was dominated by small phytoplankton cells (<10 μm), pellet production and flux were low (LO group) whether or not euphausiid populations were high. Protozooplankton concentrations did not affect this pattern. We concluded that the day and night differences in pellet concentration and flux in the HI profiles were mostly due to sinking of dielly-pulsed inputs in the surface layer, and that small zooplankton (Oithona, Oncaea), heterotrophic dinoflagellates, and bacterial activity probably caused some pellet degradation or consumption below 100 m. We estimated that consumption of sinking pellets by large copepods was insignificant. High fluxes of pellets were episodic because they required both high concentrations of large phytoplankton and large stocks of euphausiids. Under these conditions, flux events overwhelmed retention mechanisms, resulting in large exports of organic matter from the upper 200 m.  相似文献   

3.
Zooplankton in the coastal upwelling region off northern Chile may play a significant biogeochemical role by promoting carbon flux into the subsurface OMZ (oxygen minimum zone). This work identifies the dominant zooplankton species inhabiting the area influenced by the OMZ in March 2000 off Iquique (20°S, northern Chile). Abundance and vertical distribution studies revealed 17 copepod and 9 euphausiid species distributed between the surface and 600 m at four stations sampled both by day and by night. Some abundant species remained in the well-oxygenated upper layer (30 m), with no evidence of diel vertical migration, apparently restricted by a shallow (40–60 m) oxycline. Other species, however, were found closely associated with the OMZ. The large-sized copepod Eucalanus inermis was found below the oxycline and performed diel vertical migrations into the OMZ, whereas the very abundant Euphausia mucronata performed extensive diel vertical migrations between the surface waters and the core of the OMZ (200 m), even crossing it. A complete assessment of copepods and euphausiids revealed that the whole sampled water column (0–600 m) is occupied by distinct species having well-defined habitats, some of them within the OMZ. Ontogenetic migrations were evident in Eucalanidae and E. mucronata. Estimates of species biomass showed a substantial (>75% of total zooplankton biomass) daily exchange of C between the photic layer and the OMZ. Both E. inermis and E. mucronata can actively exchange about 37.8 g C m−2 d−1 between the upper well-oxygenated (0–60 m) layer and the deeper (60–600 m) OMZ layer. This migrant biomass may contribute about 7.2 g C m−2 d−1 to the OMZ system through respiration, mortality, and production of fecal pellets within the OMZ. This movement of zooplankton in and out of the OMZ, mainly as a result of the migratory behavior of E. mucronata, suggests a very efficient mechanism for introducing large amounts of freshly produced carbon into the OMZ system and should, therefore, be considered when establishing C budgets for coastal upwelling systems.  相似文献   

4.
The relationship between euphausiid community structure and water region was studied during a 2-year seasonal survey in the northwestern (NW) Pacific Ocean. The euphausiid community structure and its associated species were analyzed from 38 micronekton samples collected during eight cruises. The euphausiid community structure and its distribution patterns clearly corresponded to physical oceanographic features in the Oyashio region, Oyashio–Kuroshio Mixed Water Region (OKMWR), and Kuroshio region. In contrast, community structure was unrelated to seasonality. The 19 species out of 40 identified in this area were grouped and named after their habitats. The six cold-water species were grouped into three regional types: two coastal Oyashio species, three Oyashio–OKMWR species, and one Oyashio–Kuroshio species. The four species dominating in the OKMWR were categorized into each specific types: Nematoscelis difficilis as OKMWR–Oyashio species, Euphausia gibboides as OKMWR species, Euphausia similis as OKMWR–Oyashio & OKMWR–Kuroshio species, and Euphausia recurva as OKMWR–Kuroshio species. The seven warm-water species were categorized as Kuroshio–OKMWR species or Kuroshio species. The other two species were categorized as cosmopolitan species. In particular, regarding the result in the OKMWR, our study suggest that (1) the OKMWR has high species diversity, and (2) the dominant species, such as Euphausia pacifica, N. difficilis, E. similis, and E. gibboides, are considered to be key species in the food webs in this region.  相似文献   

5.
Hydrographic and plankton surveys were conducted over the basin and slope of the southeastern Bering Sea during April, June/July and September of 1994 and in June/July 1995, and seasonal and spatial variations of zooplankton community were investigated in relation to the oceanographic conditions. In July 1994, sea surface temperature (SST) ranged 5.3–8.7 °C, and the thermocline was between 30 and 50 m. In July 1995, however, SST was warmer (7.3–12.4 °C), and the thermocline was shallower (20–30 m). The thermal front at the shelf was also stronger in July 1995 than in July 1994. Surface salinity was higher in 1994 than 1995. A total of 17 taxonomic groups of zooplankton were identified from the plankton samples. In 1994, the highest density was observed in September. Copepods were the major taxon during all surveys. While some taxa such as euphausiids, ostracods, and Neocalanus spp. were most abundant in spring, others such as Calanus spp., Metridia pacifica, chaetognaths, and pteropods were most abundant in September. Adults and late-stage copepodites of Eucalanus bungii were abundant in spring, and were replaced by 1st–3rd stages of copepodites in summer. Zooplankton density was ca. 4 times higher in 1995 than in 1994, in part because of warm water temperature.  相似文献   

6.
Cold-water coral ecosystems building cold-water carbonate mounds occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz. A remarkable mound province is documented southwest of Ireland along the Porcupine and Rockall Banks. In this area carbonate mounds are formed in water depths between 500 and 1200 m and are often densely settled by cold-water coral ecosystems offering many ecological niches for benthic foraminifera. We investigated total (unstained) benthic foraminiferal assemblages from surface sediments (0–1 cm, >63 μm size fraction) of this region with the aim to trace their distribution patterns and to test if they can be used as bioindicators for facies characterization in different parts of carbonate mound systems. Our quantitative data were further statistically treated with non-metric multidimensional scaling (nMDS) based on Bray–Curtis similarity matrix to highlight community patterns that were not readily apparent. Our results indicate that different benthic foraminiferal assemblages characterize different facies along cold-water carbonate mounds and are related to the environmental conditions and available substrates. The following facies can be described: (1) the Off-Mound Facies is dominated by uvigerinids and other infaunal species; (2) the Dropstone Facies is characterized by infaunal Globocassidulina subglobosa and attached-epifaunal Cibicidoides sp.; (3) the Dead Coral Facies is characterised by epifaunal species (e.g., Planulina ariminensis, Hanzawaia boueana) and infaunal species (Spiroplectinella wrightii, Angulogerina angulosa, Epistominella vitrea); (4) the Living Coral Facies includes both infaunal and epifaunal species, but is dominated by the epifaunal Discanomalina coronata; and (5) the Sandwave Facies contains high abundances of epifaunal species including D. coronata. Based on this distribution, we propose D. coronata, as an indicator species to identify active mounds and/or living cold-water coral ecosystems. Our results also emphasise the importance of studying the small size fractions that yield many infaunal species. A causal link exists between distribution patterns of benthic foraminifera and cold-water coral facies, thus providing an independent tool to identify and describe the different facies in this setting.  相似文献   

7.
Analysis of wintertime CLIMODE data for 2007 indicates that a substantial portion of new Eighteen Degree Water (EDW) is likely ventilated within the eastward flowing Gulf Stream (GS) between 67°W and 52°W longitudes, possibly exceeding that formed elsewhere in the northern Sargasso Sea. Use of some global air–sea interaction data sets applied to the study region for Feb/Mar of 2007 indicate that this winter may have been anomalously energetic in air–sea exchange compared to the mean of the prior 19 yr. The largest heat and freshwater fluxes found directly over the meandering warm core of the Gulf Stream are capable of removing most of the subtropical heat anomaly of the GS, but cross-frontal fluxes of salinity are required to account for the observed regional salinity structure. An isopycnal diffusivity of ∼100 m2 s−1 is inferred from the salinity balance. This mixing would also account for the observation that EDW formed in the GS is slightly fresher than that formed in northern Sargasso Sea. The lateral flux of heat across the GS north wall also acts to cool the resulting EDW water, but the heat balance for EDW production is largely determined from GS advection and air–sea fluxes, in contrast to salinity. Based on oxygen saturation data, we estimate that 1.8–3.0 Sv-yr of new EDW is formed in the GS for the winter of 2007. EDW originating from the GS is generated in a separate location from where it is accumulated in the northern Sargasso Sea. This manner of EDW formation will produce unique characteristics of EDW found in the northern Sargasso Sea: ones that differ in T/S properties from that formed south of the GS under the more traditional 1D, cooling-driven convection process.  相似文献   

8.
We examine seasonal variations in the stable carbon and oxygen isotopic composition of individual shells of the pteropods Limacina inflata and Styliola subula, collected from Oceanic Flux Program sediment traps (at 500 m depth) near Bermuda in the western Sargasso Sea. Calcification depths estimated from L. inflata δ18O vary between 200 and 650 m in late winter and spring, and between 50 and 250 m in late summer and fall. S. subula shows similar seasonal variability with calcification depths between 250 and 600 m in late winter and spring and 50–400 m in late summer and fall. These results suggest that both species calcify across a greater range of depths than indicated by previous geochemical studies. Furthermore, the data indicate that these species change their calcification depth in conjunction with changes in thermal stratification of the water column. Pteropod shell δ13C values vary inversely with δ13CDIC but show a positive correlation with seawater [CO32−] and temperature after depth differences in δ13CDIC are accounted for. We hypothesize that either the influence of temperature on metabolic CO2 incorporation during shell growth and/or the influence of ambient [CO32−] on shell geochemistry can explain these relationships. Taken together, the individual shell δ18O and δ13C data suggest that shell calcification, and by inference the life cycle, of these pteropods is several months or less. Individual pteropod shell analyses have potential for contributing to our understanding of the environmental parameters that play a role in seasonal calcification depth shifts, as well as to our knowledge of past upper ocean thermal structure.  相似文献   

9.
The Lophelia pertusa community at Viosca Knoll (VK826) is the most extensive found to date in the Gulf of Mexico. As part of a multi-disciplinary study, the physical setting of this area was described using benthic landers, CTD transects and remotely operated vehicle observations. The site was broadly characterised into three main habitats: (1) dense coral cover that resembles biogenic reef complexes, (2) areas of sediment, and (3) authigenic carbonate blocks with sparse coral and chemosynthetic communities. The coral communities were dominated by L. pertusa but also contained numerous solitary coral species. Over areas that contained L. pertusa, the environmental conditions recorded were similar to those associated with communities in the north-eastern Atlantic, with temperature (8.5–10.6 °C) and salinity (~35) falling within the known species niche for L. pertusa. However, dissolved oxygen concentrations (2.7–2.8 ml l?1) and density (σΘ, 27.1–27.2 kg m?3) were lower and mass fluxes from sediment trap data appeared much higher (4002–4192 mg m?2 d?1). Yet, this species still appears to thrive in this region, suggesting that L. pertusa may not be as limited by lower dissolved oxygen concentrations as previously thought. The VK826 site experienced sustained eastward water flow of 10–30 cm s?1 over the 5-day measurement period but was also subjected to significant short-term variability in current velocity and direction. In addition, two processes were observed that caused variability in salinity and temperature; the first was consistent with internal waves that caused temperature variations of 0.8 °C over 5–11 h periods. The second was high-frequency variability (20–30 min periods) in temperature recorded only at the ALBEX site. A further pattern observed over the coral habitat was the presence of a 24 h diel vertical migration of zooplankton that may form part of a food chain that eventually reaches the corals. The majority of detailed studies concerning local environmental conditions in L. pertusa habitats have been conducted within the north-eastern Atlantic, limiting most knowledge of the niche of this species to a single part of an ocean basin. Data presented here show that the corals at VK826 are subjected to similar conditions in temperature, salinity, and flow velocity as their counterparts in the north-east Atlantic, although values for dissolved oxygen and density (sigma-theta: σΘ) are different. Our data also highlight novel observations of short-term environmental variability in cold-water coral habitat.  相似文献   

10.
Between May 1968 and April 1970 a survey was made of the distribution, vertical range, and seasonal occurrence of euphausiids in Cook Strait.

The euphausiid fauna reflects the predominantly subtropical origin of the coastal currents and, of the 11 species present, only Euphausia vallentini has pronounced subantarctic affinities. Nyctiphanes australis is the dominant species, with Euphausia lucens and Thysanoessa gregaria present in lesser numbers. New records included E. recurva, E. spinifera, and Stylocheiron elongatum, and the identity of Southland Current Nematoscelis euphausiids as N. megalops was confirmed. This assemblage of species, lacking a dominant subantarctic or subtropical element, may best be considered as representing a transitional fauna inhabiting a broad Subtropical Convergence Region.  相似文献   

11.
Previous studies measuring biogenic silica production in the Sargasso Sea, all conducted when no phytoplankton bloom was in progress, have reported a mean rate of 0.4 mmol Si m?2 d?1 and maximum rate of 0.9 mmol Si m?2 d?1, the lowest rates yet recorded in any ocean habitat. During February/March of 2004 and 2005 we studied the effects of late-winter storms prior to seasonal stratification on the production rate, standing stock and vertical export of biogenic silica in the Sargasso Sea. In 2004, alternating storm and stratification events provided pulsed input of nutrients to the euphotic zone. In contrast, nearly constant storm conditions in 2005 caused the mixed layer to deepen to ~350 m toward the end of the cruise. Biogenic silica production rates in the upper 140 m were statistically indistinguishable between years, averaging ~1.0 mmol Si m?2 d?1. In early March 2004, a storm event entrained nutrients into the euphotic zone and, upon stabilization, vertically integrated biogenic silica in the upper 140 m nearly doubled in 2 days. Within 4 days, 75–100% of the accumulated biogenic silica was exported, sustaining a flux to 200 m of ~0.5 mmol Si m?2 d?1 (4× greater than export measured during February and March in the mid-1990s). In 2005, destabilization without stratification increased biogenic silica flux at 200 m up to two-fold above previously measured export in late winter, with little or no increase in water-column biogenic silica. Despite comprising <5% of total chlorophyll, diatoms accounted for an estimated 25–50% of the nitrate uptake in the upper 140 m and 35–97% of the particulate organic nitrogen export from the upper 200 m during both cruise periods. These previously unobserved brief episodes of diatom production and export in response to late-winter storms increase the estimated production and export of diatom-derived material in the Sargasso Sea in late winter by >150%, and increase estimated annual biogenic silica production in this region by ~8%.  相似文献   

12.
The spatial and temporal changes of near-bottom macrofauna (suprabenthos and macroplankton) and the trophic relationships of megabenthic decapod crustaceans were analyzed off the Catalonian coasts (western Mediterranean) around Berenguera submarine canyon in four periods (April and December 1991, March and July 1992) and four zones (within Berenguera Canyon at ca. 450 m, and on adjacent slope at ca. 400, 600 m and 1200 m). In March 1992, we found the highest macrofauna abundance and the smallest sizes in the canyon, suggesting a positive effect of river discharges on suprabenthos recruitment. By contrast, macroplankton (decapods, fishes and euphausiids) did not show higher recruitment into canyons. After analyzing the diet of 23 decapod crustaceans, we found a significant segregation between guilds feeding on zooplankton and on benthos. Zooplankton (euphausiids and Pasiphaeidae) and infauna (polychaetes, Calocaris macandreae and ophiuoroids) were consistently the main prey exploited by decapod crustaceans around Berenguera Canyon. We also found some macrophyte (Posidonia oceanica) consumption, which was higher in periods of water column homogeneity (winter–spring and late autumn). Positive correlations between decapods' gut fullness (F) and decapod abundance indicate feeding aggregations, while positive correlations were also found between F and Llobregat River (situated ca. 18 km from Berenguera head) flow 1 to 2 months before sampling. Increases in F were delayed only 1 month when zooplankton feeders were analyzed alone, while benthos feeders did not show significant relationships with any environmental variables. That indicates that the response of megabenthic decapods feeding on benthos to environmental shifts is slower than that of zooplankton feeders. The importance of river flows in enhancing food supply of macro- and megabenthos dwelling close to submarine canyons was apparent, with a delay in the fauna response of 0–2 months after river flow peaks.  相似文献   

13.
Comparisons of the abundances and size distributions of marine snow (aggregated particles >0.5 mm in diameter) in the upper 100 m of the water column at ten stations off Southern California in the late afternoon with those in the same parcel of water the following morning, after nocturnal vertical migration by zooplankton had occurred, revealed the existence of a previously undescribed process affecting marine particle dynamics. Aggregate abundances increased overnight and changes were positively and significantly correlated only with the abundance of the common euphausiid, Euphausia pacifica, and with no other biological or physical factor. Moreover, mean aggregate size decreased and aggregate size distributions shifted toward smaller size classes when euphausiids were abundant. The only conclusion consistent with these findings was that euphausiids were physically disaggregating marine snow into smaller, more numerous aggregates through shear stresses generated while swimming. Video-recording of both tethered and free-swimming E. pacifica in the laboratory dramatically confirmed that aggregates passing within 8–10 mm of the animal's abdomen were fragmented either by entrainment and direct impact with the beating pleopods or by eddies generated during swimming. At the abundances observed in this study, swimming E. pacifica would have sufficiently disturbed 3–33% of the water column each night to disrupt the aggregates contained therein. This is the first evidence for the fragmentation of large particles by the swimming activities of zooplankton and suggests that macrozooplankton and micronekton play a significant role in the particle dynamics of the water column regardless of whether they consume particles or not. Disaggregation of marine snow by swimming and migrating animals may alter the sizes of particles available to grazers and microbial colonizers and reduce the flux of particulate carbon by generating smaller particles, which potentially sink more slowly and reside longer in the water column. This newly discovered process reduces carbon flux while simultaneously conserving carbon and provides a previously unconsidered link between animal behavior and the biogeochemistry of the sea. It may help explain the exponential reduction in particle flux with depth observed in parts of the ocean and help balance oceanic carbon models.  相似文献   

14.
The composition of suprabenthic crustacean assemblages, their diversity, production (P) and production/biomass (P/B) ratios, were analyzed at species level along two transects situated to the north (N) and south (S) of Mallorca (Balearic Islands, western Mediterranean) at depths between 134 m and 760 m, based on a ca. bi-monthly sampling performed between August 2003 and June 2004. Differences with depth and season in assemblage composition and diversity were analyzed as a function of the contrasting environmental features (e.g. water mass dynamics) of the two areas. We identified 187 species (18 decapods, 5 euphausiids, 16 mysids, 76 gammaridean amphipods, 13 hyperiids, 1 caprellid, 21 isopods and 37 cumaceans). Substantial mesoscale variability in the deep-sea suprabenthic assemblages coupled with diversity trends between the N and S transects were found. Seasonality was the most important gradient influencing the dynamics of suprabenthos over the upper (350 m) and middle (650–750 m) slope in the N area. Conversely, the S area appeared to be more stable temporally with depth as the main gradient inducing assemblage differences. Different depth-related patterns were observed both for diversity and P/B. To the north diversity was very low at the shelf-break, increasing on the upper-slope (H′ > 3.00) and then decreasing again on the middle-slope. To the south diversity increased smoothly downward, reaching the highest values on the middle-slope. Regarding productivity, P/B was highest at intermediate depths to the north (over ca. 450–500 m), while to the south highest P/Bs were found deeper (over ca. 600–650 m). The higher P/B at intermediate depths found along N are likely due to higher % of organic matter (OM) in sediments, a product of oceanographic frontal systems. In particular, P/B was higher along N among omnivores and detritus feeders (e.g. Andaniexis mimonectes, Lepechinella manco and combined cumaceans), coupled to enriched OM in sediments, while along S mesoplanktonic carnivores (Rhachotropis spp.) had higher P/Bs. We conclude that on the north slope the influence of frontal systems and more active flow dynamics of different water masses (WIW and LIW) increases natural disturbance in the area, increasing productivity and diversity of suprabenthic peracarids in the Benthic Boundary Layer. Also, species showed a displacement of their average distributions (their Centres of Gravity, CoG) to shallower depths along N, which is another indicator of more favorable habitat conditions for suprabenthos in the 400–500 m range at N.  相似文献   

15.
The life-histories and the secondary production of four dominant peracarid crustaceans (the mysids Boreomysis arctica and Parapseudomma calloplura, the amphipod Rhachotropis caeca, and the isopod Ilyarachna longicornis) in bathyal depths of the Bay of Biscay (NE Atlantic; between 383 and 420 m) and the Catalan Sea (Northwestern Mediterranean; between 389 and 1355 m) were established. Both the Atlantic and the Mediterranean populations of the major part of the target-species had two generations/year with mean cohort-production intervals (CPI) ranging from 5.5 mo for Ilyarachna longicornis to 6.3 mo for Parapseudomma calloplura. The Hynes method showed secondary production to vary in the Bay of Biscay between 0.113 mg DW m−2 yr−1 for I. longirostris and 3.069 mg DW m−2 yr−1 for P. calloplura, with P/B ratios between 4.57 (I. longirostris) and 7.93 (Boreomysis arctica). In the Catalan Sea, production varied between 0.286 mg DW m−2 yr−1 for I. longirostris and 1.096 mg DW m−2 yr−1 for P. calloplura, with P/B between 5.72 (I. longirostris) and 6.66 (P. calloplura). Application of two different empiric models to the whole peracarid assemblage gave similar levels of secondary production in both study areas (between 29.26 and 32.14 mgDWm−2 yr−1 in the Bay of Biscay; between 26.23 and 26.54 mg DW m−2 yr−1 in the Catalan Sea). From the analysis of gut contents of 22 species the dominant species in each study area were assigned to two basic trophic levels, detritus feeders and predators. Also, cumulative curves of dominance showed high diversity (low dominance) for peracarid assemblages distributed at mid-bathyal depths (524–693 m) both in the Bay of Biscay off Arcachon and in the Catalan Sea off Barcelona. We also discuss and compare, both within and between areas, how environmental features may explain the observed diversity patterns, the trophic structure, and the production results obtained for the suprabenthos assemblages.  相似文献   

16.
The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.  相似文献   

17.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

18.
The population structure, dynamics and distribution of Spisula solida, Diogenes pugilator and Branchiostoma lanceolatum, common species in the south coast of Portugal, were studied in a spatial–temporal manner in order to understand the influence of cross-shore sediment transport and anthropogenic activities. Spisula solida is harvested commercially, whereas D. pugilator and B. lanceolatum are non-target species, with little information available on the population dynamics of these species. The study was performed in 2001–2002, and along a gradient of 100–5000 m from the coastline, corresponding to a depth gradient of between 1 and 32 m deep. Spisula solida was distributed preferentially at 3–12 m deep, and its distribution appeared to be influenced seasonally by the cross-shore sediment dynamics. Results suggested benthic recruitment in June. Some recruitments had no expression (year 2001) since adults were not present, which seems to be a direct impact of clams' fisheries. Diogenes pugilator showed preferential distribution at shallow depths, from 1.3 to 8 m. Results suggested recruitments every 4 months, in June, February and October. Branchiostoma lanceolatum showed the widest distribution, from 7 to 26 m deep. Recruitment seemed to start in June until October, when it attained an abundance peak of juveniles. For both non-target species no clear effects of the cross-shore dynamics or the clams' fisheries impact were visible.  相似文献   

19.
The trophic ecology, energy and reproductive states of the deep-water shrimp Aristaeomorpha foliacea, widely distributed along the slopes of the Mediterranean Sea Basins, were analysed in eight areas spread along ca. 3000 km in order to identify patterns in the habitat conditions supporting the species. From W to E the areas were situated between the north side of Eivissa (39°12′N, 1°20′E, in the Balearic Basin) and off Mersin, Turkey (36°15′N, 34°19′E, in the Levantine Sea). Trends identified mainly as a function of longitude from west to east were: (i) higher δ15N, parallel to δ15N shifts in the top 200 m of the water column for particulate organic N (Pantoja et al., 2002). The δ15N trend indicates that the deep trophic web, i.e. A. foliacea at 400–600 m, reflects the δ15N signal of the photic zone; (ii) a similar significant trend of δ13C, related with exploitation of pelagic versus benthic resources by A. foliacea in each area (i.e. by local variability of terrigenous inputs via submarine canyons). More depleted δ13C was found at mid-longitudes (Tyrrhenian Sea and Sicily Channel) linked to higher consumption of macroplankton prey (Pasiphaea spp., euphausiids and mesopelagic fishes). The feeding intensity (gut fullness, F) and prey diversity (J) of A. foliacea were related, according to generalized linear models, with the temperature and salinity of intermediate waters, variables in turn associated with latitude and longitude. Both F and J were higher in areas with greater shrimp density. The optimal ecological habitat of A. foliacea appears to be located in the Tyrrhenian Sea and the Sicily Channel, where we found the highest F, the greatest trophic diversity and A. foliacea in the best biological condition (i.e. with higher hepato-somatic index, HSI). These are also the areas with the highest densities of A. foliacea. In contrast, in the western Mediterranean Sea (Balearic Basin and the southern Balearic Islands), where A. foliacea has low densities, the shrimp showed generally lower values of trophic indicators and biological condition.  相似文献   

20.
In this paper, we present multi-parameter data on phytoplankton community composition, and its response to storm events in the Sargasso Sea in late February and early March of 2 years (2004 and 2005). Observed physical conditions spanned a continuum from pulsed destratification/stratification to continuous mixing, with a corresponding range of phytoplankton growth responses. The pulsed destratification/stratification condition resulted in a rapid (1–2 d) doubling of euphotic zone chlorophyll (Chl-a) along with a rapid succession, days timescale, from diatoms to haptophytes and then to cyanobacteria. Deep (>300 m) continuous mixing led to a slow (8–9 d) doubling of autotrophic biomass with no observed succession in the phytoplankton community. These different temporal responses appear to be due to differences between nutrient-limited and light-limited phytoplankton growth, although differences in grazing rates or selective grazing cannot be ruled out. Unexpectedly, we found that flow cytometrically enumerated picoeukaryotes were not accounted for in HPLC-pigment derived phytoplankton classifications and did not covary with any of the pigments quantified. Yet, the picoeukaryotes were positively related to increases in total Chl-a and increased carbon export, suggesting an important but as yet unknown role in the Sargasso Sea carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号