首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ADCP measurements of the velocity structure in the permanent thermocline at two locations over the continental slope in the Bay of Biscay are presented. The vertical variation of the contribution of the inertia-gravity waveband to the kinetic energy, vertical motion, and current shear are analysed. The semi-diurnal tides together with near-inertial waves appear to provide over 70% of the high-frequency kinetic energy (>1/3 cpd). Over the vertical range of the ADCP observations the phase of the harmonic M2 tide changes up to 155°, while the kinetic energy varies in the vertical by a factor of 3.8, showing the importance of the contribution of internal waves to the observed tidal motion. Both semi-diurnal internal tidal waves and near-inertial waves have a vertically restricted distribution of the variance of the horizontal and vertical velocity, as in internal wave beams. The short-term 14-day averaged amplitude and phase lag of the M2 tide shows large temporal changes, with a characteristic 40–45 day time scale. These changes are probably related to variations in generation sites and propagation paths of the internal tide, because of changes in the temperature and salinity stratification due to the presence of meso-scale eddies. The relatively large shear in the inertia-gravity wave band, mainly at near-inertial frequencies, supports low-gradient Richardson numbers that are well below 1 for nearly half of the time. This implies that the large shear may support turbulent mixing for a large part of the time.  相似文献   

2.
3.
Rates of nitrogen assimilation by phytoplankton were measured at 13 stations along a transect in the northwestern Indian Ocean, from the Gulf of Oman, southwards to approximately 8°N, during November and December 1994. Nitrate (NO3), ammonium (NH4) and urea assimilation were measured using simulated in situ 15N incubation techniques. These measurements were supported by simultaneous rate measurements of primary production using 14C incubation techniques and detailed vertical distributions of temperature and chlorophyll concentrations. Euphotic zone integrated nitrogen assimilation rates varied between 1.1 and 23.6 mmol N m-2 day-1, with generally higher rates occurring at the northern and southern ends of the transect. At the majority of stations ammonium was the preferred nitrogen substrate assimilated; the average integrated assimilation rate of ammonium being 3.7 mmol N m-2 day-1 compared to 1.6 and 1.8 mmol N m-2 day-1 for urea and nitrate respectively. This general preference is reflected in the low f-ratios, which were ⩽0.52 for all stations and in the relative preference indices (RPI) values which were consistently >1 for ammonium and <1 for nitrate. A further examination of the data has lead to an apparent partitioning of the northwestern Indian Ocean into 2 regions; a region north of 17°30′N and a region south of this, to about 8°N. This division is based on: (i) the relationship between the f-ratio and ambient nitrate levels; (ii) nitrogen assimilation and primary production and (iii) the biomass distribution. It is suggested that this partitioning should be investigated further with the development of biogeochemical provinces in mind and the estimation of f-ratios on much larger, horizontal scales.  相似文献   

4.
Measurements of dissolved gases (O2, N2O), nutrients (NO3, NO2, PO43−), and oceanographic variables were performed off northern Chile (∼21°S) between March 2000 and July 2004, in order to characterize the existing oxygen minimum zone (OMZ) and identify processes involved in N2O cycling. Both N2O and NO3 displayed sharp, shallow peaks with concentrations of up to 124 nM (1370% saturation) and 26 μM, respectively, in association with a strong oxycline that impinges on the euphotic zone. NO2 accumulation below the oxycline's base reached up to 9 μM. The vertical distribution of physical and chemical parameters and the existing relationships between apparent oxygen utilization (AOU), apparent N2O production (ΔN2O), and NO3 revealed three main layers within the upper OMZ. The first layer, or the upper part of the oxycline, is located between the base of the mixed layer and the mid-point of the oxycline (around σt=25.5 kg m−3). There the O2 declines from ∼250 to ∼50 μM, and strong (but opposing) O2 and NO3 gradients and their associated AOU–ΔN2O and AOU–NO3 relationships indicate that nitrification produces N2O and NO3 in the presence of light. The second layer, or lower part of the oxycline, represents the upper OMZ boundary and is located between the middle and the base of the oxycline (25.9<σt<26.1 kg m−3). In this layer NO3 reduction begins at O2 levels ranging from ∼50 to ∼11 μM and accumulation of 41–68% of the ΔN2O pool occurs. The accumulation of N2O (but not of NO2 or NH4+) and the observed AOU–ΔN2O and AOU–NO3 relationships (which are opposite to those of the overlying first layer) suggest that a coupling between nitrification and NO3 reduction is involved in N2O cycling in this second layer. The third layer is the OMZ core, where the O2 concentration remains constant (O2<11 μM). It coincides with σt>26.2 kg m−3, which is typical of Equatorial Subsurface Water (ESSW). In this layer, N2O and NO3 continue to decrease, but a large NO2 accumulation is observed. Considering all the data, a biogeochemical model for the upper OMZ off northern of Chile is proposed, in which nitrification and denitrification differentially mediate N2O cycling in each layer.  相似文献   

5.
Mode-1 internal tides were observed the western North Atlantic using an ocean acoustic tomography array deployed in 1991–1992 centered on 25°N, 66°W. The pentagonal array, 700-km across, acted as an antenna for mode-1 internal-tides. Coherent internal-tide waves with O(1 m) displacements were observed traveling in several directions. Although the internal tides of the region were relatively quiescent, they were essentially phase locked over the 200–300 day data record lengths. Both semidiurnal and diurnal internal waves were detected, with wavenumbers consistent with those calculated from hydrographic data. The M2 internal-tide energy flux was estimated to be about 70 W m−1, suggesting that mode-1 waves radiate 0.2 GW of energy, with large uncertainty, from the Caribbean island chain at this frequency. A global tidal model (TPXO 5) suggested that 1–2 GW is lost from the M2 barotropic tide over this region, but the precise value was uncertain because the complicated topography makes the calculation problematic. In any case, significant conversion of barotropic to baroclinic tidal energy does not occur in the western North Atlantic basin. It is apparent, however, that mode-1 internal tides have very weak decay and retain their coherence over great distances, so that ocean basins may be filled up with such waves. Observed diurnal amplitudes were an order of magnitude larger than expected. The amplitude and phase variations of the K1 and O1 constituents observed over the tomography array were consistent with the theoretical solutions for standing internal waves near their turning latitude. The energy densities of the resonant diurnal internal waves were roughly twice those of the barotropic tide at those frequencies.  相似文献   

6.
A ship-mounted 153 kHz narrow-band ADCP and 1 m2 MOCNESS were deployed between 16 and 24 Sept. 1997 in the Ligurian central zone (∼43°20′N 7°48′E). Results from both instruments showed that the zooplankton community performed vertical migrations that conformed to the classical pattern of ascent at dusk (∼18:30 h) and descent at dawn (∼06:30 h). Depth-discrete net samples between 0 and 500 m showed that the community was dominated by two species, the euphausiid Meganyctiphanes norvegica (Northern krill) and the pteropod Cavolinia inflexa, which migrated in separate discrete bands that were detectable by the ADCP. Information from the ADCP was used to estimate vertical migration speed in two ways: (i) from the trajectory of the back-scattering bands over time and (ii) from the Doppler-shift vertical velocity measured within depth zones at the corresponding time and depth of these bands. Estimates of the migration speed of C. inflexa were between 2 and 7 cm s−1 upwards and between 4 and 7 cm s−1 downwards. M. norvegica was estimated to migrate at speeds between 7 and 8 cm s−1 upwards and over 11 cm s−1 downwards. The consistently lower migration speeds estimated from Doppler measurements as compared with estimates obtained from measuring trajectories of back-scattering bands over time was believed to result from a methodological artefact. The Doppler measurements were nevertheless useful in a relative sense in revealing the relative speed of individuals within swarms. It was shown that individuals at the front of the upwardly migrating band of M. norvegica moved more slowly than those at the rear. These results illustrate the extra biological information that can be obtained by ADCPs compared with conventional echo-sounders.  相似文献   

7.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   

8.
We studied the seasonal, diel, and vertical distribution of phytoplankton N2 fixation to understand the relative contributions of unicellular and filamentous nitrogen fixers (diazotrophs) to N2 fixation and nitrogen recycling in the northern South China Sea (SCS) and the neighboring upstream Kuroshio. N2-fixation rates were measured by the 15N2 tracer technique (addition by bubble) on unicellular (<10 or 20 µm) and the filamentous diazotrophs (>10 or 20 µm, mostly Trichodesmium and Richelia) fractionated by 10- or 20-µm mesh sizes. The mean depth-integrated total (unicellular+filamentous) N2-fixation rates in the SCS (51.7±6.2 µmol N m−2 d−1) averaged 1/3 of that in the Kuroshio (142.7±29.6 µmol N m−2 d−1), with higher rates in the winter than in other seasons in the SCS and the opposite seasonal pattern in the Kuroshio. Unicellular diazotrophs contributed 65% of the total N2 fixation in the SCS, which were negatively correlated with surface temperature and, as for total N2 fixation, were higher in the winter when Trichodesmium spp. were scarce. In comparison, the unicellular diazotrophs contributed 50% of total N2 fixation in the Kuroshio, and their contributions were not significantly correlated with surface temperature. In both the SCS and the Kuroshio, the unicellular N2 fixation was more important during the night than during the day, and in the deep euphotic layer than in the surface layer, even in the daytime. Our results show that the unicellular diazotrophs were important N2 fixers and contributed significantly to N2 fixation in the tropical marginal seas, more so in the SCS than the Kuroshio.  相似文献   

9.
Observations from a five-mooring array deployed in the vicinity of Sedlo Seamount over a 4-month period, together with supporting hydrographic and underway ADCP measurements, are described. Sedlo Seamount is an elongated, intermediate depth seamount with three separate peaks, rising from 2200 m water depth to summit peaks between 950 and 780 m depth, located at 40°20′N, 26°40W. Currents measured in depth range 750 and 820 m – the layer close to the summit depth of the shallowest southeast peak – showed a mean anti-cyclonic flow around the seamount, with residual current velocities of 2–5 cm s−1. Significant mesoscale variability was present at this level, and this is attributed to the weak and variable background impinging flow. Stronger, more persistent currents were found at the summit mooring as a result of tidal rectification and some weak amplification. Below 1300 m, currents were extremely weak, even close to the seabed. Time series of relative vorticity for the depth layer 750–820 m showed persistent anti-cyclonic vorticity except for two periods of cyclonic vorticity. A mean relative vorticity of −0.06f (f=the local Coriolis frequency) was calculated from a triangle of current meters located at the flanks of the seamount. Modelling results confirmed that anti-cyclonic flow above the seamount was likely due to Taylor Cone generation driven by a combination of steady impinging and tidally rectified flow. The closed circulation pattern over the seamount was found to extend to ∼150 m above the summit level, consistent with simple idealised theory and the supporting hydrographic observations. At shallower depths (<500 m) model simulations predicted a predominantly cyclonic recirculation most likely controlled by topographic steering along the zonal axis of the seamount. There was some indication of flow reversal at these depths from Acoustic Doppler Current Profiler (ADCP) measurements carried out at one hydrographic survey. The model results were in good agreement with observations at the seamount summit, but were unable to reproduce the mesoscale variability patterns recorded in shallower layers. Kinetic energy patterns derived from the model revealed high variability in the oceanic far field downstream of the seamount summit probably as a result of complex flow interaction along the chain of seamount peaks. Possible impacts of the flow dynamics on the biological functioning at Sedlo Seamount and its surroundings are discussed.  相似文献   

10.
Pinna nobilis is the largest endemic bivalve of the Mediterranean Sea, declared protected since 1992. Although hydrodynamic stress induced by waves is known to influence density, size and orientation of P. nobilis, the effect of other hydrological features is unknown. This paper considers a P. nobilis population living within a Posidonia oceanica meadow in the Gulf of Oristano (Sardinia, Italy). We hypothesize that spatial differences in density and orientation of P. nobilis may be related to significant wave height (HS), wave direction (DW), bottom current direction (DBC) and bottom current speed (SBC). A population of P. nobilis was investigated at different sites and its distribution was correlated to hydrodynamics by means of a numerical modeling approach. The spatial distribution was patchy, with a density of 0.06–6.7 ind. 100 m 2. A non-uniform distribution of shell orientations (OS) was demonstrated in 4 sites out of 6. DBC and SBC were the main factors affecting OS, while waves had little influence. A SBC of 0.07 m s 1 appears to be the threshold for inducing specimen directionality with shells aligned to the current and the ventral side exposed to the flow. This suggests that feeding strategy is a key factor in determining OS, in addition to drag minimization. We also highlighted the role of adjacent lagoons in supporting high densities as a result of high food availability. These findings demonstrate the usefulness of modeling techniques in explaining the spatial distribution pattern of P. nobilis and in contributing to our knowledge of its ecological traits.  相似文献   

11.
We discuss nitrous oxide (N2O) and methane (CH4) distributions in 49 vertical profiles covering the upper ∼300 m of the water column along two ∼13,500 km transects between ∼50°N and ∼52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined “plume” of exceptionally high N2O concentrations coincident with very low levels of CH4, located between ∼23.5°N and ∼23.5°S; this feature reflects the upwelling of deep waters containing N2O derived from nitrification, as identified by an analysis of N2O, apparent oxygen utilization (AOU) and NO3, and presumably depleted in CH4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to ∼42% of the Atlantic Ocean surface area were in the range 0.40–0.68 Tg N2O yr−1 and 0.81–1.43 Tg CH4 yr−1. Based on contemporary estimates of the global ocean source strengths of atmospheric N2O and CH4, the Atlantic Ocean could account for ∼6–15% and 4–13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH4 than previously thought.  相似文献   

12.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

13.
An intra-annual investigation of the fugacity of CO2 (fCO2) has been conducted in surface waters of the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula) in four cruises made in 2006 and 2007. Intra-annual variability of fCO2 was assessed and is discussed in terms of mixing, temperature and biology. In the study area of the shelf, thermodynamic control over fCO2 predominates from early May to late November, and this is opposite and similar in magnitude to the net biological effect. However, biological control over fCO2 predominates during winter. The results suggest that surface waters in the coastal area are under-saturated with respect to atmospheric CO2 during most of the year; therefore they represent a sink for atmospheric CO2 between November and May (? 1.0 mmol m? 2 day? 1), but a weak source in June (1.3 mmol m? 2 day? 1). In contrast, the coastal ecosystems studied (the lower estuary of Guadalquivir Estuary and Bay of Cádiz) acted as a weak sink for atmospheric CO2 during February (? 1.3 mmol m? 2 day? 1) and as a source between May and November (2.6 mmol m? 2 day? 1). The resulting mean annual CO2 flux in the north-eastern shelf of the Gulf of Cádiz was ? 0.07 mol m? 2 year? 1 (? 0.2 mmol m? 2 day? 1), indicating that the area acts as a net sink on an annual basis.  相似文献   

14.
This study explores the changes in the surface water fugacity of carbon dioxide (fCO2) and biological carbon uptake in two Southern Ocean iron fertilisation experiments with different hydrographic regimes. The Southern Ocean Iron Release Experiment (SOIREE) experiment was carried out south of the Antarctic Polar Front (APF) at 61°S, 141°E in February 1999 in a stable hydrographic setting. The EisenEx experiment was conducted in a cyclonic eddy north of the APF at 48°S, 21°E in November 2000 and was characterised by a rapid succession of low to storm-force wind speeds and dynamic hydrographic conditions. The iron additions promoted algal blooms in both studies. They alleviated algal iron limitation during the 13-day SOIREE experiment and probably during the first 12 days of EisenEx. The fCO2 in surface water decreased at a constant rate of 3.8 μatm day−1 from 4 to 5 days onwards in SOIREE. The fCO2 reduction was 35 μatm after 13 days. The evolution of surface water fCO2 in the iron-enriched waters (or ‘patch’) displayed a saw tooth pattern in EisenEx, in response to algal carbon uptake in calm conditions and deep mixing and horizontal dispersion during storms. The maximum fCO2 reduction was 18–20 μatm after 12 and 21 days with lower values in between. The iron-enriched waters in EisenEx absorbed four times more atmospheric CO2 than in SOIREE between 5 and 12 days, as a result of stronger winds. The total biological uptake of inorganic carbon across the patch was 1389 ton C (±10%) in SOIREE and 1433 ton C (±27%) in EisenEx after 12 days (1 ton=106 g). This similarity probably reflects the comparable size of the iron additions, as well as algal growth at a similar near-maximum growth rate in these regions. The findings imply that the different mixing regimes had less effect on the overall biological carbon uptake across the iron-enriched waters than suggested by the evolution of fCO2 in surface water.  相似文献   

15.
Boundary currents and internal waves determine cross-slope zonation of erosion and deposition in the Faeroe-Shetland Channel. Currents were measured at 8 and 34–50 m above the bottom at three mooring sites (502, 595 and 708 m depth) for 14 days. The structure of the water column was evaluated from CTD sections, and included nepheloid layers and particulate matter concentrations. Indicators for recent deposition in the sediment (organic carbon, phytopigments, 210Pb) were measured at eight stations across the slope. Strong near-bottom currents at the upper slope sustain down-slope particle transport in a benthic nepheloid layer, which is eroded under the influence of critically reflecting M2 internal tidal waves at 350–550 m, where the major pycnocline meets the sloping bottom. Beam attenuation profiles confirmed the presence of intermediate nepheloid layers intruding into the Channel along the major pycnocline, and elevated concentrations of particulate matter and chlorophyll-a were measured at this depth. Near-bottom currents decreased with depth, thus allowing particle deposition down the slope. Inventories of excess 210Pb activity in the sediment deeper than 600 m were higher than what was expected on the basis of atmospheric input of 210Pb and production in the water column, thus indicating additional lateral inputs. Simple calculations showed that off-slope input of particles from areas shallower than 600 m may be responsible for the enhanced deposition at greater depths.  相似文献   

16.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

17.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

18.
New productivity measurements using the 15N tracer technique were conducted in the north-eastern (NE) Arabian Sea during six expeditions from 2003 to 2007, mostly in winter. Our results indicate that the NE Arabian Sea has a potential for higher new productivity during blooms. Nitrate uptake by plankton is the highest during late winter. New productivity and f-ratios in the NE Arabian Sea are mainly controlled by hydrodynamic and meteorological parameters such as wind strength, sea surface temperature (SST), mixed layer depth (MLD) and mixed layer nitrate. Deepening of the mixed layer supplies nitrate from below, which supports the observed nitrogen uptake. Higher f-ratios during blooms indicate the strong coupling between surface layers and sub-surface layers. Deepening of mixed layer below 100 m (from its inter-monsoon value between 30 and 40 m) transferred often more than 100 mmol N–NO3 m? 2 into the surface layers from below. The observed winter blooms in the region are supported by such input and are sustained for more than a month. Higher new productivity has been found in late winter, whereas transport of nitrate is maximum in early winter. In general, new production varies progressively during winter. Diurnal cycling of the mixed layer could be the reason for the under utilization of entrained nitrate during early winter. New productivity values and wind strength show significant differences during Feb–Mar 03 and Feb–Mar 04. These differences indicate that the winter cooling and parameters related the biological productivity also vary inter-annually. However, the difference between the new productivity values between Feb–Mar 03 and Feb–Mar 04 is much lower than the difference between Jan 03 and Feb–Mar 03. The results suggest that amplitude of seasonal variation is higher than the inter-annual variation in the region. During spring, Fickian diffusive fluxes of nitrate into the surface layer range from 0.51 to 1.38 mmol N–NO3 m? 2 day? 1, and can account for 67% and 78% of the observed nitrogen uptake in the coastal and open ocean regions, respectively. We document the intra-seasonal and inter-annual variations in new productivity during winter and identify sources of nitrate which support the observed productivity during spring.  相似文献   

19.
The wave transmission, reflection, and energy dissipation of the double rows of vertical piles suspending horizontal steel C shaped bars are experimentally and theoretically studied under normal regular waves. Different wave and structural parameters are investigated e.g. the wave length, the C shaped bars draft and spacing, the supporting piles diameter and spacing, and the space between the double rows. Also, the theoretical model based on an eigenfunction expansion method is developed to study the hydrodynamic breakwater performance. In order to examine the validity of the theoretical model, the theoretical results are compared with the experimental and theoretical results obtained by different authors. Comparison between experiments and predictions showed that theoretical model provides a good estimate to the different hydrodynamic coefficients when the friction factors of the upper and the lower parts are fU = 1.5 and fL = 0.75. The present breakwater physical model gives efficiency near other similar systems of different shapes.  相似文献   

20.
A series of flow induced vibration (FIV) experiments for an equilateral triangle prism elastically mounted in a water channel are performed with different system stiffness at constant damping and mass. An amplitude variation coefficient is proposed to describe FIV stationarity in the present study. The FIV of the prism can be divided into three primary regions based on the amplitude and frequency responses, which are the vortex induced vibration (VIV) branch, the transition branch from VIV to galloping, and the galloping branch. The transition branch occurs at the reduced velocity in the range of 7.8 < Ur = U/(fn,air·D) < 10.4, accompanied with a relatively rapid increase in amplitude and a precipitous drop in frequency and vibration stationarity. In addition, the reduced velocity where the transition region is initiated is independent of the system stiffness. The maximum amplitude reaches 3.17 D in the galloping branch. The ratio of the response frequency to the natural frequency of the prism in air remains locked to approximately 0.65 throughout the fully developed galloping branch. Large amplitude responses in an infinite range of flow velocities, excellent vibration stationarity and steady vibration frequencies, which are characteristics of the galloping of the prism, have a positive impact on improving energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号