首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hadronic cosmic rays of energies below about 100 MeV nucleon–1 are thought to be an important component of the Galactic ecosystem. However, since these particles cannot be detected near Earth due to the solar modulation effect, their composition and flux in the interstellar medium are very uncertain. Atomic interactions of low‐energy cosmic rays with interstellar gas can produce a characteristic nonthermal X‐ray emission comprising very broad lines from de‐excitations in fast ions following charge exchange. We suggest that broad lines at ∼0.57 and ∼0.65 keV could be detected from a dark molecular cloud in the local interstellar medium. These lines would be produced by fast oxygen ions of kinetic energies around 1 MeV nucleon–1 (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This paper shows that our understanding of the statistical properties of X‐ray selected normal galaxies (e.g. X‐ray luminosity function) can be significantly improved by combining a wide‐area XMM‐Newton survey with the moderare resolution and high S/N optical spectroscopy of the SDSS. Such a combined dataset has the potential to minimise uncertainties that affect existing normal galaxy samples at X‐rays, such as small number statistics, cosmic variance, AGN contamination and incompleteness at bright X‐ray luminosities. It is demonstrated that a 100 deg2 XMM‐Newton survey in the SDSS area to the limit fX(0.5–2 keV) ≈ 5 × 10–15 erg cm–2 s–1 will detect over 400 X‐ray selected normal galaxies with excellent control over systematic biases, thereby providing tight contraints on the X‐ray luminosity function at z ≈ 0.1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The commonly used classical equipartition or minimum‐energy estimate of total magnetic fields strengths from radio synchrotron intensities is of limited practical use because it is based on the hardly known ratio K of the total energies of cosmic ray protons and electrons and also has inherent problems. We present a revised formula, using the number density ratio K for which we give estimates. For particle acceleration in strong shocks K is about 40 and increases with decreasing shock strength. Our revised estimate for the field strength gives larger values than the classical estimate for flat radio spectra with spectral indices of about 0.5–0.6, but smaller values for steep spectra and total fields stronger than about 10 µG. In very young supernova remnants, for example, the classical estimate may be too large by up to 10×. On the other hand, if energy losses of cosmic ray electrons are important, K increases with particle energy and the equipartition field may be underestimated significantly. Our revised larger equipartition estimates in galaxy clusters and radio lobes are consistent with independent estimates from Faraday rotation measures, while estimates from the ratio between radio synchrotron and X‐ray inverse Compton intensities generally give much weaker fields. This may be explained e.g. by a concentration of the field in filaments. Our revised field strengths may also lead to major revisions of electron lifetimes in jets and radio lobes estimated from the synchrotron break frequency in the radio spectrum. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present the results of soft X‐ray studies of the classical nova V2491 Cygni using the Suzaku observatory. On day 29 after outburst, a soft X‐ray component with a peak at ∼0.5 keV has appeared, which is tantalising evidence for the beginning of the super‐soft X‐ray emission phase. We show that an absorbed blackbody model can describe the observed spectra, yielding a temperature of 57 eV, neutral hydrogen column density of 2 × 1021 cm–2, and a bolometric luminosity of ∼1036 erg s–1. However, at the same time, we also found a good fit with an absorbed thin‐thermal plasma model, yielding a temperature of 0.1 keV, neutral hydrogen column density of 4 × 1021 cm–2, and a volume emission measure of ∼1058 cm–3. Owing to low spectral resolution and low signal‐to‐noise ratio below 0.6 keV, the statistical parameter uncertainties are large, but the ambiguity of the two very different models demonstrates that the systematic errors are the main point of concern. The thin‐thermal plasma model implies that the soft emission originates from optically thin ejecta, while the blackbody model suggests that we are seeing optically thick emission from the white dwarf (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present the analysis of optical and X‐ray XMM‐Newton data of the source 4U 1344‐60. On the basis of the optical data we propose to classify 4U 1344‐60 as a Seyfert 1.5 galaxy and we measured a redshift value z = 0.012 ± 0.001. The observed X‐ray spectrum is complex. The continuum emission can be described as a power law obscured by two neutral absorption components. 4U 1344‐60 exhibits a broad and skewed iron line at 6.4 keV most likely originated in a few gravitational radius of an accretion disc. The analysis also reveals the presence of two narrow emission line‐like features at ∼4.9 keV and ∼5.3 keV. Assuming that hot spots on the surface of the accretion disc, orbiting very close to the black hole is responsible of these emission lines, the accretion disc would present an inclination of 20° and the active regions would be located in the 6–10 R g radius range. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Luminosity functions are one of the most important observational clues when studying galaxy evolution over cosmic time. In this paper we present the X‐ray luminosity functions for X‐ray detected AGN in the SXDS and GWS fields. The limiting fluxes of our samples are 9.0 ×10–15 and 4.8 ×10–16 erg cm–2 s–1 in the 0.5–7.0 keV band in the two fields, respectively. We carried out analysis in three X‐ray bands and in two redshift intervals up to z ≤ 1.4. Moreover, we derive the luminosity functions for different optical morphologies and X‐ray types. We confirm strong luminosity evolution in all three bands, finding the most luminous objects at higher redshift. However, no signs of density evolution are found in any tested X‐ray band. We obtain similar results for compact and early‐type objects. Finally, we observe the “Steffen effect”, where X‐ray type‐1 sources are more numerous at higher luminosities in comparison with type‐2 sources. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present the wide-field imaging and polarimetry at  ν= 20 GHz  of seven most extended, bright  ( S total≥ 0.50 Jy)  , high-frequency selected radio sources in the southern sky with declinations  δ < −30°  . Accompanying the data are brief reviews of the literature for each source. The results presented here aid in the statistical completeness of the Australia Telescope 20-GHz Survey: the Bright Source Sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We were able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density  (∼0.50 ± 0.06 Jy)  on a scale of 10 arcmin. Six out of the seven sources have a clearly detected compact radio core in our images, with either a null detection or less than 2 per cent detection of polarized emission from the nuclei. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however, PKS 1333−33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.  相似文献   

10.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We use the results from a constrained, cosmological magnetohydrodynamic simulation of the Local Universe to predict the radio halo and the γ-ray flux from the Coma cluster and compare it to current observations. The simulated magnetic field within the Coma cluster is the result of turbulent amplification of the magnetic field during the build-up of the cluster. The magnetic seed field originates from starburst driven, galactic outflows. The synchrotron emission is calculated assuming a hadronic model. We follow four approaches with different distributions for the cosmic ray proton population within galaxy clusters. The radial profile of the radio halo can only be reproduced with a radially increasing energy fraction within the cosmic ray proton population, reaching >100 per cent of the thermal-energy content at ≈1 Mpc, for example the edge of the radio-emitting region. Additionally, the spectral steepening of the observed radio halo in Coma cannot be reproduced, even when accounting for the negative flux from the thermal Sunyaev–Zeldovich effect at high frequencies. Therefore, the hadronic models are disfavoured from the present analysis. The emission of γ-rays expected from our simulated Coma is still below the current observational limits (by a factor of ∼6) but would be detectable by FERMI observations in the near future.  相似文献   

12.
We present new radio continuum data at four frequencies for the supermassive, peculiar galaxy NGC 1961. These observations allow us to separate the thermal and non-thermal radio emission and to determine the non-thermal spectral index distribution. This spectral index distribution in the galactic disc is unusual: at the maxima of the radio emission the synchrotron spectrum is very steep, indicating aged cosmic ray electrons. Away from the maxima the spectrum is much flatter. The steep spectrum of the synchrotron emission at the maxima indicates that a strong decline of the star formation rate has taken place at these sites. The extended radio emission is a sign of recent cosmic ray acceleration, probably by recent star formation. We suggest that a violent event in the past, most likely a merger or a collision with an intergalactic gas cloud, has caused the various unusual features of the galaxy.  相似文献   

13.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

14.
The thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos is governed at certain conditions by radiation of HD lines. A small fraction of the shocked gas can cool down to the temperature of the cosmic microwave background (CMB). We estimate an upper limit for this fraction: at z = 10 it increases sharply from about qT ∼ 10–3 for dark halos of M = 5 × 107 M to ∼ 0.1 for halos with M = 108 M. Further increase of the halo mass does not lead however to a significant growth of qT – the asymptotic value for M ≫ 108 M is 0.3. We estimate the star formation rate associated with such shock waves, and show that they can provide a small but not negligible fraction of the star formation. We argue that extremely metal‐poor low‐mass stars in the Milky Way may have been formed from primordial gas behind such shocks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

16.
We discuss the distribution of radial velocities of galaxies belonging to the Local Group. Two independent samples of galaxies as well as several methods of reduction from the heliocentric to the galactocentric radial velocities are explored. We applied the power spectrum analysis using the Hann function as a weighting method, together with the jackknife error estimation. We performed a detailed analysis of this approach. The distribution of galaxy redshifts seems to be non‐random. An excess of galaxies with radial velocities of ∼24 km s–1 and ∼36 km s–1 is detected, but the effect is statistically weak. Only one peak for radial velocities of ∼24 km s–1 seems to be confirmed at the confidence level of 95%. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
What are the origins of the soft X‐ray line emission from non‐AGN galaxies? XMM‐Newton RGS spectra of nearby non‐AGN galaxies (including starforming ones: M82, NGC 253, M51, M83, M61, NGC 4631, M94, NGC 2903, and the Antennae galaxies, as well as the inner bulge of M31) have been analyzed. In particular, the Kα triplet of O VII shows that the resonance line is typically weaker than the forbidden and/or inter‐combination lines. This suggests that a substantial fraction of the emission may not arise directly from optically thin thermal plasma, as commonly assumed, and may instead originate at its interface with neutral gas via charge exchange. This latter origin naturally explains the observed spatial correlation of the emission with various tracers of cool gas in some of the galaxies. However, alternative scenarios, such as the resonance scattering by the plasma and the relic photo‐ionization by AGNs in the recent past, cannot be ruled out, at least in some cases, and are being examined. Such X‐ray spectroscopic studies are important to the understanding of the relationship of the emission to various high‐energy feedback processes in galaxies (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Lofar     
H01 A first glance at LOFAR: Experience with the Initial Test Station H02 The Square Kilometer Array (SKA) – Status and Prospects H03 LOFAR calibration: confrontation with real WSRT data H04 Simulations of magnetic fields in the cosmos H05 RM structure in the polarized synchrotron emission from our Galaxy and the Perseus cluster of Galaxies H06 Mapping the Reionization Era through the 21 cm Emission Line H07 Spiral galaxies seen with LOFAR H08 Software Infrastructure for Distributed Data Processing H09 The Low Frequency Array (LOFAR) – Status and Prospects H10 Coincident cosmic ray measurements with LOPES and KASCADE‐Grande H11 Radio relics in a cosmological cluster merger simulation H12 Detection of radio pulses from cosmic ray air showers with LOPES H13 Geosynchrotron radio emission from extensive air showers H14 Imaging capabilities of future radio telescopes H15 Digital signal processing system of Multi‐Beam Meter Wavelengths Array. H16 The Multi‐Beam Meter Wavelengths Array H17 Monitoring of the Solar Activity by LOFAR H18 Calibration of LOPES30 H19 An Outreach Project for LOFAR and Cosmic Ray Detection H20 Galactic tomography based on observations with LOFAR and Effelsberg H21 150 MHz observations with the Westerbork and GMRT radio telescopes of Abell 2256 and the Bootes field: Ultra‐steep spectrum radio sources as probes of cluster and galaxy evolution H22 Experience of simultaneous observations with two independent multi‐beams of the Large Phased Array H23 GRID Computing at Forschungszentrum Karlsruhe suitable for LOFAR  相似文献   

19.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

20.
We present new observations at three frequencies (326, 615 and 1281 MHz) of the radio lobe spiral galaxy, NGC 3079, using the Giant Metrewave Radio Telescope. These observations are consistent with previous data obtained at other telescopes and reveal the structure of the nuclear radio lobes in exquisite detail. In addition, new features are observed, some with H  i counterparts, showing broad-scale radio continuum emission and extensions. The galaxy is surrounded by a radio halo that is at least 4.8 kpc in height. Two giant radio extensions/loops are seen on either side of the galaxy out to ∼11 kpc from the major axis, only slightly offset from the direction of the smaller nuclear radio lobes. If these are associated with the nuclear outflow, then the galaxy has experienced episodic nuclear activity. Emission along the southern major axis suggests motion through a local intergalactic medium (not yet detected), and it may be that NGC 3079 is itself creating this local intergalactic gas via outflows. We also present maps of the minimum energy parameters for this galaxy, including cosmic ray energy density, electron diffusion length, magnetic field strength, particle lifetime and power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号