首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium structure of two-dimensional magnetic current sheets is investigated for systems in which the plasma pressure dominates the bulk flow energy, as appears appropriate for the quiet time plasmasheet in the geomagnetic tail. A simple model is studied in which the field is contained between plane parallel boundaries and varies exponentially along the system, while the plasma pressure is anisotropic, the anisotropy being arbitrary but constant along the centre plane. When the field is highly inflated by the plasma current it is found that adiabatic solutions exist only when the plasma pressure is close to isotropic. For the case P > P it is argued that a thin, non-adiabatic current layer will in general form at the sheet centre, usually embedded within a much broader adiabatic current distribution. When P > P, a broad region of very depressed fields develops about the centre of the current sheet, terminated at its outer boundary by a spike in the current density. This central region becomes unstable to the mirror mode well before the limiting adiabatic solution is reached.  相似文献   

2.
Self-generated wave fluctuations are particularly interesting in the solar wind and magnetospheric plasmas, where Coulomb collisions are rare and cannot explain the observed states of quasi-equilibrium. Linear theory predicts that firehose and ordinary-mode instabilities can develop under the same conditions, which makes it challenging to separate the role of these instabilities in conditioning the space-plasma properties. The hierarchy of these two instabilities is reconsidered here for nonstreaming plasmas with an electron-temperature anisotropy T >T , where ∥ and ⊥ denote directions with respect to the local mean magnetic field. In addition to the previously reported comparative analysis, here the entire 3D wave-vector spectrum of the competing instabilities is investigated, with a focus on the oblique firehose instability and the relatively poorly known ordinary-mode instability. Results show a dominance of the oblique firehose instability with a threshold lower than the parallel firehose instability and lower than the ordinary-mode instability. For stronger anisotropies, the ordinary mode can grow faster, with maximum growth rates exceeding those of the oblique firehose instability. In contrast to previous studies that claimed a possible activity of the ordinary-mode in the low β [<?1] regimes, here it is rigorously shown that only the high β [>?1] regimes are susceptible to these instabilities.  相似文献   

3.
A model is proposed in which a mixture of hot solar wind and cold atmospheric plasma flowing in the dayside equatorial boundary layer towards the dawn-dusk plane generates hydromagnetic waves near the frequency ω = ωBi¦1 ? T¦T¦ where ωBi is the ion gyrofrequency and T, T are the temperatures of the solar wind plasma, parallel and perpendicular respectively to the magnetic field B. The model accounts for the properties of IPRP events, i.e. intervals of geomagnetic pulsations of periods rising on average from about 2 s to about 7 s over an interval of about 5 min. The diagnostic potential of this phenomenon for study of the boundary layer is indicated.  相似文献   

4.
We generalize the hot relativistic MHD wind analysis to include the anisotropy of the pressure created in the pulsar wind by the strong magnetic field. Even with anisotropy the relativistic MHD equations integrate. In a very intense magnetic field, the motion of relativistic particles becomes rapidly one-dimensional in the direction of the field due to the very important radiative losses. Consequently, their distribution function becomes also one-dimensional and the component of the pressure, in the direction perpendicular to the magnetic field, decrease. In the limitP ?0,P ≠0 we obtain a solution for the fluid flow which, starting at the neutron star surface, reaches smoothly infinity.  相似文献   

5.
Observed magnetospheric asymmetries which occur in response to the y-component of the IMF are discussed in terms of the open model of the magnetosphere. The torque which the IMF exerts on the magnetosphere about the Earth-Sun axis results in asymmetric addition of open flux tubes to the tail lobes about the noon-midnight meridian. In response an IMF-associated By field appears across the tail lobes. The ratio between internal and external By fields will generally be same as the ratio between internal and external electric fields. If the tail flux asymmetry is related to an asymmetric distribution of the field normal to the tail magnetopause then an asymmetry in tail lobe electric field and plasma populations will immediately result, as observed. If the flux asymmetry is associated with a twist in the tail then the By field will appear but not necessary the electric field and plasma asymmetries. Generally both effects may occur together. Simple open tail lobe models are derived which demonstrate the asymmetry effects. These represent more physically satisfactory models of the tail and its plasma populations than available hitherto, but they remain somewhat unrealistic in a number of respects. Finally, it is shown that the observed asymmetry effects on closed (auroral zone) field lines may be at least qualitatively accounted for if the cross-magnetosphere IMF-associated By field pervades not only the open but also the closed field line regime, as may be generally expected.  相似文献   

6.
We investigate the transport process of electrons in the tail plasma sheet by convection electric fields, under the assumption of conservation of the first two adiabatic invariants. The variation of the electron distribution function, and hence the bulk parameters with distance from the Earth are calculated. The results show that the electron distribution has a pressure anisotropy with p/p< 1 in the plasma sheet. Finally, the effects of the pressure anisotropy are qualitatively considered in terms of the modification of the geomagnetic field structure in the tail plasma sheet and instabilities due to wave-particle interactions.  相似文献   

7.
A 225-dimensional particle-mesh computer model for the simulation of the current-sheet region of the geomagnetic tail is described. Important features are (a) the use of Fast Fourier techniques for the efficient solution of Ampere's equation, (b) the incorporation of sources and sinks of particles, (c) facilities for simulating finite width effects and (d) the option of including a normal magnetic field component linking through the sheet.Simulations carried out using this model indicate that current sheets with a non-zero normal magnetic field component and an infinite width are stable. The particles trace out Speiser-like orbits in such a case. Sheets with Bnormal = 0 and a finite width are unstable with respect to the ion tearing-mode instability. However the presence of a normal magnetic field stabilises the system provided ρ0<2Ly where ρ0 is the characteristic length associated with the normal field and where Ly is the width of the sheet.On the basis of these results it is suggested that a geomagnetic substorm occurs when the normal magnetic field drops below the critical value needed for stability.  相似文献   

8.
The kinetic Alfven waves are investigated using Maxwell-Boltzmann-Vlasov equation to evaluate the kinetic dispersion relation and growth/damping rate with magnetic field gradient, density gradient, temperature gradient and velocity gradient with inhomogeneous plasma. The effect of gradient terms is included in the analysis for both the regions k ρ i <1 and k ρ i >1, where k is the perpendicular wave number and ρ i is the ion gyroradius. This study elucidates a possible scenario to account for the particle acceleration and the wave dissipation in inhomogeneous plasmas. This model is able to explain many features observed in plasma sheet boundary layer as well as to evaluate the dispersion relation, growth rate, growth length and damping rate of kinetic Alfven wave. The applicability of this model is assumed for auroral acceleration region, plasma sheet boundary layer and cusp region.  相似文献   

9.
Adiabatic indices for a non-dissipative anisotropic convecting plasma are analyzed, and general expressions for the effective adiabatic index and the partial adiabatic indices parallel (γ) and perpendicular (γ) to the magnetic field are obtained. It is shown that, in the general case, the value of the effective adiabatic index is not an universal constant and depends on the plasma temperature anisotropy and on the properties of the plasma motion. The values of γ and γ are shown to be independent of the plasma parameters being completely determined by the characteristics of the plasma flow.  相似文献   

10.
The result of investigating high-latitude Pc1–2 pulsations are presented in this paper. They show that these unstructured oscillations are typical in intervals of low magnetic activity for regions of projections of the dayside cusp on the Earth's surface. The morphological properties of these pulsations, namely the character of their diurnal variations and dependence of their amplitude and frequency of occurrence on magnetic activity on different latitudes, suggest methods of utilization for tracing the location of the equatorial boundary of the dayside cusp. It is suggested that Pc1–2 pulsations are generated mainly in the dayside magnetosheath on field lines, crossing the magnetopause and entering in the dayside cusp. The possible mechanism of generation is the ion-cyclotron instability of plasma of finite pressure (β ? 1) and with anisotropic temperature (T > T).  相似文献   

11.
Auroral boundary variations and the interplanetary magnetic field   总被引:1,自引:0,他引:1  
This paper describes a DMSP data set of 150 auroral images during magnetically quiet times which have been analyzed in corrected geomagnetic local time and latitudinal coordinates and fit to offset circles. The fit parameters R (circle radius) and (X, Y) (center location) have been compared to the hourly interplanetary magnetic field (IMF) prior to the time of the satellite scan of the aurora. The results for variation of R with Bz, agree with previous works and generally show about a 1° increase of R with increase of southward Bz by 1 nT. The location of the circle center also has a clear statistical shift in the Southern Hemisphere with IMF By such that the southern polar cap moves towards dusk (dawn) with By > (By < 0).  相似文献   

12.
《Planetary and Space Science》1987,35(8):1009-1020
Latitudinal structures of discrete arcs are modelled as a consequence of the quasi-steady magnetosphere-ionosphere coupling involving viscous interaction between sunward and anti-sunward plasma flows in the magnetosphere. The quasi-steady state in the magnetosphere and ionosphere coupling is described by the magnetospheric and ionospheric current conservation and the field-aligned currentpotential relation assuming adiabatic electron motion along field lines. The upward and downward fieldaligned currents are assumed to be stably maintained by vorticity-induced space charges in the region of plasma flow reversal, where divergence of the magnetospheric electric field E is negative and positive, respectively. By introducing the effective conductance Σdc arising from the anomalous viscosity, a specific relation between the dc field-aligned current density J and the magnetospheric electric field E is derived as J=−ΣdcdivE. Sufficiently large potential drops to accelerate auroral electrons are shown to exist along the auroral field lines originating from the flow reversal region with div E < 0. It is shown that the latitudinal structure of a discrete arc is primarily determined by the magnetospheric potential structure and the characteristic width is on the order of 10 km at the ionospheric altitude.  相似文献   

13.
From the viewpoint of dynamical topology, planetary magnetospheres are classified into three: Types 1, 2 and 3. When the rotation vector and dipole moment of a planet and the velocity vector of the solar wind are denoted as Ω, M, and V, respectively, the planetary magnetosphere with ΩMV is called Type 1. The magnetospheres of the present Earth, Jupiter, and Uranus at its equinoctial points belong to this type. The magnetosphere with ΩMV is called Type 2, which includes the Uranian magnetosphere at its solstitial points. The magnetosphere with ΩM and ΩV is called Type 3. The Earth's palaeomagnetosphere is considered to have experienced Type 3 during excursions and transition stages of palaeomagnetic polarity reversals. In the Type 3 magnetosphere, drastic diurnal variations are expected in configurations of the dayside cusps, tail axis, neutral sheet, polar caps, and so on. A possible relation between the Type 3 palaeomagnetosphere and palaeoclimate of the Earth during polarity reversals and geomagnetic excursions is suggested. It is also suggested that the heliomagnetosphere during polarity reversals of the general field of the Sun exhibits a drastic configuration change similar to the Type 3 palaeomagnetosphere of the Earth. A relation between the perpendicular condition ΩM and magnetic variable stars and pulsars is briefly discussed.  相似文献   

14.
In an earlier paper, Bowers (1973), ion plasma oscillations were found to be unstable in the steady state developed by Cowley (1972) for the neutral sheet in the Earth's geomagnetic tail. In this paper a similar stability analysis is carried out but for a different steady state, suggested by Dungey, with the result that unstable waves with frequencies near the electron plasma frequency are found. In the Dungey steady state the current necessary for magnetic field reversal is carried by plasma originating from both the magnetosheath and the lobes of the tail. This modifies the steady state proposed by Alfvén and subsequently developed by Cowley in which all the current is carried by plasma from the lobes of the tail thereby fixing the cross-tail potential Φ. With magnetosheath plasma present the value of Φ is no longer fixed solely by parameters in the lobes of the tail but the cross-tail electric field is still assumed localised in the dusk region of the sheet as in the Cowley model due to the balance of charge required in the neutral sheet. The value of Φ can be expected to increase as magnetic flux is transported to the tail which inflates and causes flux annihilation because the magneto-sheath plasma in the neutral sheet has insufficient pressure to keep the two lobes of the tail apart. The Vlasov-Maxwell set of equations is perturbed and linearised enabling a critical condition for instability to be found for modes propagating across the tail. Typically, this condition requireseΦ≳KT m whereT m is the temperature of magnetosheath electrons. The instability occurs in the presence of cold plasma which hasE×B drifted into the neutral sheet from the lobes of the tail. This contrasts with the usual two stream instability which is stabilised by the cold plasma. Once precipitated the instability may be explosive provided current disruption occurs, for then a further increase in Φ will result which drives a greater range of wave numbers unstable thereby causing even more turbulence and an even larger cross-tail electric field. Because of this behaviour the instability may be a trigger for a substorm.  相似文献   

15.
Observation of the convection flows associated with the morning discontinuity indicate that under highly disturbed conditions (Kp = 8 +, Dst = ?300 nT, Bty > 0), the polar cusp may be shifted equatorwards to the latitudes covered by the SABRE radar (61–65° N geomagnetic). The convection reversal occurred over a narrow range of local time ( < 30 min) and was preceded by a region of westward convection flow poleward of the ambient eastward flow. These observations are consistent with the flows associated with the DPY current system for By > 0.  相似文献   

16.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   

17.
The relationship between the simultaneously observed positions of the maximum omnidirectional flux of the quiet-time ring current positive ions (Λφ) and the maximum electron temperature ΛT in the trough is studied in the midnight sector of the topside ionosphere. Λφ maps to the inner edge of the plasma sheet where ring current fluxes change from nearly isotropic to trapped. At altitudes near 2500 km, the electron temperature at trough latitudes were always sharply peaked. Although Λφ varied with the level of geomagnetic activity, (Λφ ? ΛT) did not. These observations support the hypothesis that the quiet-time ring current is the source of elevated electron temperatures found near the plasmapause. Below 1300 km, peaked electron temperature distributions in the trough were not consistent features of the data. It is shown that (Λφ ? ΛT) increased with decreasing altitude. The possible influences of a westward component to the convective electric field and ionospheric refraction of ion cyclotron waves are discussed.  相似文献   

18.
《Planetary and Space Science》1987,35(10):1301-1316
The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions (Kp ⩽ 3 +). The study has been carried out for the summer months in the Southern Hemisphere. “Shear reversals” (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180°.It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bz- component and in the latitude range of about 70°–80°. SRs in the dusk sector occur predominantly when the azimuthal component By is positive and in the dawn sector when By is negative, irrespective of the sign of Bz These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bz.Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 × 104 to 6.5 × 105 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to occur mainly for negative Bz.  相似文献   

19.
The topic of this report is that of the influence of noise, and of the finite length and width of the tail on the behaviour of the current sheet.The presence of a weak magnetic field linking through the current sheet leads to plasma containment and counterstreaming, with the consequence that both the plasma temperature and density are increased in the vicinity of the current sheet. The effect of these changes on the relationship between steady bulk parameters is discussed.The finite length of the tail significantly modifies the equilibrium situation in the near Earth tail, for streams mirroring at the Earthwards end of field lines lead to a reduction of merging. The finite width of the tail restricts the region of reduced merging rate to a triangular shaped area extending from the dusk magnetopause into the tail. The finite tail width is also important in the more distant tail, where magnetosheath particles which penetrate the magnetopause ends of the current sheet may become major current carriers, especially if Bz, is small and northwards.Finally, it is shown that the above factors, together with a non-adiabatic current sheet, are important to our understanding of the temporal behaviour of the tail.  相似文献   

20.
The origin of magnetospheric asymmetry effects associated with the equatorial plane component of the interplanetary magnetic field (IMF) is discussed in terms of the forces exerted on open flux tubes mapping into the solar wind. It is argued that the downstream relaxation of the magnetosphere under the action of these stresses towards a state of reduced stress is such as to allow, in effect, partial penetration of this field component (both Bx and By in magnetospheric coordinates) into the magnetosphere. Many of the associated phenomena are therefore qualitatively described by the ‘dipole plus uniform IMF’ model, since this represents the idealization of exactly zero electromagnetic stress and hence gives a lowest order picture of the effects which result from magnetospheric relaxation toward that state. This is true of IMF By-associated effects which are well documented experimentally and which form a rich and consistent set of phenomena which have received considerable attention over the past decade. It is argued here that exactly corresponding phenomena are expected to be associated with the IMF Bx field as well, but because of the differing field direction these will take differing and usually less obvious forms than the similar effects associated with By. The suggested partial penetration of the IMF Bx field should be directly testable in the dipolar field region of the magnetosphere, but in the tail North-South displacements of the current sheet (and possibly magnetopause) are expected to occur instead. Some evidence of the latter displacements are presented. The other major IMF Bx effect should be noon-midnight displacements of the polar cap, such as have been recently reported. Little IMF Bx effect on auroral zone flows is anticipated, by contrast with the dawn-dusk asymmetries in this flow associated with IMF By.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号