首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By using an image-dipole magnetic field model for a variety of plasma density profiles we have studied the latitude effect of the 0.1–1.0-Hz hydromagnetic wave propagation in the Earth's magnetosphere. On comparing the results of signal group delay time calculations for dipole and model magnetic fields with ground and satellite observations we obtain some propagation characteristics of Pc1s and localize the regions of their generation. Our results show that most high-latitude Pc1 events are generated in the outer magnetosphere in accordance with ground and satellite observations and theoretical considerations. The non-dipole geometry of the geomagnetic field in the outer magnetosphere (at geomagnetic latitudes φ0 > 66°, L > 6) has a significant effect on the hydromagnetic wave propagation.  相似文献   

2.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

3.
Structured Pc 1 signals propagate in the ionospheric F2 region duct from their secondary sources at high latitudes to lower latitudes. Propagation directions to low latitude stations can be inferred from measurements of polarization parameters. The analysis of five events recorded at two low latitude stations (L = 1.9) are presented. Direction of arrival measurements are used to investigate the spatial and temporal structure of Pc 1 sources. Results show a close relationship between the structure of events identified in the frequency-time representation and direction of arrival measurement patterns. Multiple sources are sometimes indicated.  相似文献   

4.
In a previous paper, we showed a method for deriving the interplanetary magnetic field (IMF) orientation from the velocity distribution of ring-like distributed ions as measured by the Ion Mass Analyser (IMA) on board Mars Express (MEX). This method has been improved so that one can derive the IMF orientation from a very limited portion of the ring distributions, i.e., only the highest energy portion of the ring distribution. This method uses the maximum variance direction L instead of the minimum variance direction N, which are derived from manually selected ring data. Because IMA's count rate for a semi-persistent ring distribution is nearly proportional to energy squire, L is most likely aligned to the tangential direction of the ring distribution at its highest energy, and this tangential direction is parallel or anti-parallel to the electric field. A vector product of L and the solar wind direction (X) gives the IMF orientation projected to the Y-Z plane. The tilt angle of IMF toward the X direction from the Y-Z plane is the same as the angle between the X direction and the ring plane, and is obtained from two methods when the initial speed of the ring ions is estimated to be much smaller than the solar wind speed: (1) angle between the velocity of ring's maximum energy portion and the solar wind vector, and (2) energy ratio between the solar wind and the maximum energy of the ring. The present method is applied to the IMA data from 3 June 2005 (0605-0640 UT) when the Mars Global Surveyor (MGS) magnetometer data are available. Using these data, we also tried to determine the sign of the IMF direction by estimating the evolution direction of the ring ions.  相似文献   

5.
The polarization method of source location has been used on data from two low latitude stations (L = 1.9) to determine the exit region of structured Pc1 emissions from the magnetosphere into the ionosphere. Propagation directions in the ionospheric F2 duct can be inferred from measurements of polarization parameters made at the low latitude recording station. Measurements on six events indicated an average source L value of 3.2, which represented the sources being on the average 1.0 ± 0.5 Re inside the corresponding statistical plasmapause position.  相似文献   

6.
Temperature data collected over several years from rocket grenade and other experiments at Point Barrow (Alaska), Fort Churchill (Canada) and Wallops Island (Virginia) have been analysed to determine the effect of geomagnetic activity on the neutral temperature in the mesosphere and to study the latitudinal variation of this effect. An analysis carried out has revealed almost certainly significant correlations between the temperature and the geomagnetic indicies Kp and Ap at Fort Churchill and marginally significant correlations at Barrow and Wallops. This has also been substantiated by a linear regression analysis.The results indicate two types of interdependence between mesospheric temperature and geomagnetic field variations. The first type is the direct heating effect, during a geomagnetic disturbance, which has been observed in the present analysis with a time lag of 3–15 hr at the high latitudes and 36 hr at the middle latitudes. The magnitude of this heating effect has been found to decrease at the lower altitudes. The second type of interrelation which has been observed is temperature perturbations preceding geomagnetic field variations, both presumably caused by a disturbance in atmospheric circulation at these levels.  相似文献   

7.
The wave characteristics of Pc5 magnetic pulsations are analyzed with data of OGO-5, ISEE-1 and -2 satellites. The toroidal modes (δBD >δBH) of Pc5 pulsations are observed at a higher magnetic latitude in the dawnside outer magnetosphere. The compressional and poloidal modes (δBz.dfnc;δBH >δBD) of Pc5 pulsations are mostly observed near the magnetic equator in the duskside outer magnetosphere. This L.T. asymmetry in the occurrence of dominant modes of Pc5's in space can be explained by the velocity shear instability (Yumoto and Saito, 1980) in the magnetospheric boundary layer, where Alfvénic signals in the IMF medium are assumed to penetrate into the magnetospheric boundary layer along the Archimedean spiral. The asymmetrical behaviour of Pc5 pulsation activity on the ground across the noon meridian can be also explained by the ionospheric screening effect on the compressional Pc5 magnetic pulsations. The compressional modes with a large horizontal wave number in the duskside magnetosphere are expected to be suppressed on the ground throughout the ionosphere and atmosphere.  相似文献   

8.
The geometry of the open flux area in the polar region is computed by superposing a uniform interplanetary magnetic field (IMF) with various orientation angles to a model of the magnetosphere. It is confirmed that the IMF By component is as important as the Bz component in “opening” the magnetosphere. It is also shown that the computed area of open field lines is remarkably similar to the observed ones which were determined by using the entry of solar electrons. In particular, when the IMF vector is confined in the X-Z-plane and the Bz component has a large positive value, the open area becomes crescent-shaped, coinciding approximately with the cusp region.  相似文献   

9.
The power generated by the solar wind—magnetosphere dynamo is proportional to the amount of the open magnetic flux Φ. It is difficult to use this fact in determining observationally the dependence of Φ on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, Φ is very closely proportional to sin θ/2) for a wide range of the intensity of the uniform field, where θ denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates.  相似文献   

10.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

11.
Unusual auroral emission at mid-latitudes, showing nearly exclusively the green oxygen line (557.7 nm) and occurring during the early part of the recovery phase after strong magnetic storms is described. The emission has a life-time of up to several hours, consists of cloud-like patches and appears quite isolated at medium latitudes with no simultaneous aurorae at higher latitudes. The name “post-storm mid-latitude green aurora” is proposed for this emission. For the event observed during the night of 29–30 August 1978, additional ionospheric measurements from heights below the mid-latitude aurora (?min, A3-LF data) are available from nearby observations. Our investigation shows that the emission was observed just at the beginning of a post-storm effect (PSE) in ionospheric absorption. The optical and absorption data have been used to extract information on precipitating high-energy electrons, assumed to be the cause of both the optical emisson and the excessive absorption. During the night in question precipitating electrons with fluxes above the quiet-time level and energies upto at least 200 keV were found in a region extended in latitude (2.7 < L < 3.3) and probably even more extended in longitude. Latitudinally narrow bands, elongated along shells of constant L, with extremely high fluxes of 10–20keV electrons (according to our estimates at least 5. 107 el cm?2s?1) were embedded within this region.  相似文献   

12.
Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 geomagnetic pulsations are quasi-sinusoidal variations in the earth’s magnetic field in the period range 10–45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However, the application of ground-based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the earth’s magnetosphere. The solar wind provides the energy for the earth’s magnetospheric processes. Pc3–5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers were established in south-east Australia over a longitudinal range of 17 degrees at L = 1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400–700 km/s. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing oscillations of magnetospheric field lines.  相似文献   

13.
The correlation between the polar cap geomagnetic variations (H-traces) and the changes of the azimuthal (YSE) and vertical (ZSE) components of the interplanetary magnetic field (IMF) during undisturbed periods is examined. It is shown that peak-to-peak correlation between YSE and geomagnetic horizontal component variations may be generally observed in the daytime cusp region, independently of the magnitude and polarity of the ZSE. The existence of the DP3 disturbances associated with the northward component ZSE > 0 is confirmed. It is shown that the disturbances due to the vertical component of the IMF dominate in the region near the pole. In so far as the southward component of the IMF generates both polar cap disturbances and geomagnetic substorms, the disturbances in the region near the pole, associated with ZSE < 0, may be regarded as a precursor of a substorm. On this basis a new index of the polar cap magnetic activity PCL, characterizing the changeability of the magnetic field is proposed. It is shown that the increase of the PCL index is followed in 1–2 hr by a substorm in 70% of events considered.  相似文献   

14.
In this paper we study a possible existence of surface wave (SW) global modes of the outer magnetosphere. The SW modes are supported by two plasma discontinuities: the plasmapause and the boundary between the open and closed field lines of the magnetosphere. Conditions under which the SW global modes can propagate azimuthally and along the magnetic field lines are examined. The ionosphere at the ends of the field lines is considered as reflecting boundaries of these SW modes. As a result SW standing wave structures along the magnetic field fluxes can be formed. Two branches of SW modes are derived. The low frequency branch, fs,1 falls in the Pc5 range, while the high frequency branch, fs,2—in the Pc4 range, where fs,1(2) is the fundamental SW global mode frequency. Their frequencies possess quantized properties in the following way: f≡(1,2,3, …)fs,1(2). The high frequency SW branch, fs,2 exists only for relatively great azimuthal wavenumbers k. It is pointed out that most of the SW global mode characteristics are similar to those of the FLR. These results are applied to 1.8 mHz global mode observations on 11 January 1997. Spectral, phase and polarization properties of this Pc5 pulsation event under northward IMF conditions are examined as we see them from ground-based (L’Aquila and TNB observatories) and satellite (POLAR and INTERBALL) observations.  相似文献   

15.
The result of investigating high-latitude Pc1–2 pulsations are presented in this paper. They show that these unstructured oscillations are typical in intervals of low magnetic activity for regions of projections of the dayside cusp on the Earth's surface. The morphological properties of these pulsations, namely the character of their diurnal variations and dependence of their amplitude and frequency of occurrence on magnetic activity on different latitudes, suggest methods of utilization for tracing the location of the equatorial boundary of the dayside cusp. It is suggested that Pc1–2 pulsations are generated mainly in the dayside magnetosheath on field lines, crossing the magnetopause and entering in the dayside cusp. The possible mechanism of generation is the ion-cyclotron instability of plasma of finite pressure (β ? 1) and with anisotropic temperature (T > T).  相似文献   

16.
A statistical study using data from four geomagnetic recording stations with McIlwain parameters from L = 2.5 to 6.6, suggests that the general source location of Pc 1 micropulsations lies close to the plasmapause.For each station a contour plot of the number of Pc 1 events occurring at specific Kp, and LT intervals is constructed and a curve representing the plasmapause being overhead at this station is superimposed. The relative positions of the plasmapause curve and the contour maxima are taken to indicate the position of the Pc 1 source location.  相似文献   

17.
Polarization properties of Pc3 magnetic pulsations at very low latitudes cannot be explained by existing theories which are based on the field line resonance model, because magnetic field lines at ¦Φ¦ < 22° are almost entirely in the ionosphere. In order to interpret Pc3 polarization characteristics observed at very low latitudes (¦Φ¦ < 20°), I would like to propose a possible, new qualitative model in which two superimposed ionospheric eddy currents, oscillating with slight differences in frequency in the Pc3 range and in azimuthal wave number, move azimuthally at very low latitudes. The equatorial ionospheric Pedersen eddy currents are believed to be predominantly caused by inductive electric fields of compressional Pc3 source waves which may possibly arrive in the equatorial ionosphere from the outer magnetosphere.  相似文献   

18.
It is assumed that the generation mechanism of Pc5's is somehow related to oscillations of a current system whose ionospheric path is the westward (or the eastward) electrojet. The Earth induction effects on the vertical polarization of Pc5 pulsations recorded in auroral regions are then modelled as the response of a flat layered Earth to an overhead uniform band of current whose intensity oscillates in time with periods ranging from 2 to 10 min. It is shown that polarization ellipses are opened in the H-Z planes by induction alone with a maximum ellipticity of the order of 0.15 at distances from the centre of the electrojet comparable to its width.  相似文献   

19.
Unusual wave activity in the Pc 1–2 frequency band (0.1–5 Hz) was observed by the Cluster spacecraft in association with the two large geomagnetic storms of late 2003. During the onset of the Hallowe’en storm on October 29, 2003, intense broadband activity between ∼0.1 and 0.6 Hz appeared at all 4 spacecraft on both sides of the magnetic equator at perigee (near 1400 UT and 08:45 MLT). Power was especially strong and more structured in frequency in the compressional component: a minimum in wave power was observed at 0.38 Hz, corresponding to the oxygen ion cyclotron frequency. Poynting vector calculations indicated that wave power was primarily directed radially inward rather than along the magnetic field. Narrowband purely compressional waves near 0.15 Hz appeared at higher dayside latitudes in the southern hemisphere. CIS ion spectrometer data during this pass revealed that O+ was the dominant energetic ion. During the recovery phase of the November storm, on November 22, 2003, predominantly transverse 1.8 Hz waves with peak-to-peak amplitude of 10 nT were observed by all four spacecraft near perigee at L=4.4. During this more typical Pc 1 event, wave power was directed along B, toward the northern ionosphere. An unusually polarized 2.3 Hz emission (with power in the radial and compressional, but not azimuthal directions) was observed at L=5.4–5.9, 10–15° south of the magnetic equator. We infer that this wave event may have been generated on lower L shells and propagated obliquely to Cluster's location. Consistent with other recent observations, anisotropic plasma sheet/ring current proton distributions appeared to be a necessary condition for occurrence of waves during both passes, but was not always a sufficient condition. The transverse waves of November 22 occurred in regions which also contained greatly increased fluxes of cool ions (E<1 keV). On both days, Cluster observed features not previously reported, and we note that the purely compressional nature of the October 29 events was not anticipated in previous theoretical studies. The fact that these unusually polarized waves occurred in association with very intense geomagnetic storms suggests that they are likely to be extremely rare.  相似文献   

20.
The differential flux and energy spectra of solar cosmic ray heavy ions of He, C, O, Ne, Mg, Si, and Fe were determined in the energy interval E = 3–30 MeV amu-1 for two large solar events of January 24, 1971 and September 1, 1971 in rocket flights made from Ft. Churchill. From these data the relative abundances and the abundance enhancement factors, ξ, relative to photospheric abundances were obtained for these elements. Similar results were obtained for a third event on August 4, 1972 from the available published data. Characteristic features of ξ vs nuclear charge dependences were deduced for five energy intervals. The energy dependence of ξ for He shows a moderate change by a factor of about 3, whereas for Fe, ξ shows a very dramatic decrease by a factor of 10–20 with increasing energy. It is inferred that these abundance enhancements of solar cosmic ray heavy ions at low energies seem to be related to their ionization states (Z *) and hence studies of Z * can give information on the important parameters such as temperature and density in the accelerating region in the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号