首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bulk flow of the solar wind plasma in the flank-side of the magnetospheric boundary layer, where the magnetic field lines are closed, has a component transverse to the ambient field. There is quite a strong velocity shear. The theoretical model ignores inhomogeneities in the ambient field and the mass density which occur at the magnetopause on about the same length scale as that of the velocity shear.Consideration is restricted to hydromagnetic waves which have a k-vector nearly normal to the Bo-Vo plane, i.e., approximately the magnetopause surface (kx >kzkykxLB > 1 and LB = 0.1 ~ 1.0 RE where LB is a characteristic length of the boundary layer). It is found that a long-period (T ? 40 sec) hydromagnetic wave [the Alfvén-like wave (ΩA)] driven by velocity shear instability can be excited in the shear plasma. It is also found that the group velocity of the HM-wave is directed almost along the magnetic field line and that the magnetic variance in the shear plasma tends to be parallel to the Bo-Vo plane. The velocity shear instability in the magnetospheric boundary layer is judged to be a likely source of long-period magnetic pulsations.  相似文献   

2.
In order to analyse the convective instability of the force-free magnetic field, an exact solution of the MHD equation for the magnetic field (1) together with the flow field (2) of constant speed V0 making an angle θ with the magnetic field, was chosen as the unperturbed state. The stability of the fields between two parallel conducting walls of seperation d was studied by a linear perturbation method, which led to the eigenvalue problem (12), X being given by (13). It was shown by an approximate variational method that instability will set in by the flow field if V0 is greater than 1/ 3 times Alfven velocity VA. For β=V2oV2A < 13, the stability of the force-free field (1) is not influenced by the flow field, which may still be significant in other respects. Perturbations transverse to the magnetic field were found to be the most unstable modes.  相似文献   

3.
When observed noontime values of the maximum electron density, NMAX(F2), in the ionospheric F2 region are plotted as a function of magnetic latitude, a curve is produced which has two peaks, one on either side of the dip equator at ± 16° dip latitude. This paper theoretically investigates the daily variation of this latitudinal distribution of NMAX(F2) (the so-called Appleton or equatorial anomaly) and specifically attempts to account for the longitudinal differences observed between the American and Asian sectors.Part I outlines the theory involved in solving the time-dependent plasma continuity equation in which production, loss, and transport of ionization are taken into account, where the effects of neutral wind, ambipolar diffusion and E × B drift are included in the transport term. By describing the geomagnetic field in two equivalent ways, B = ? ▽γ and B = ▽α × ▽β, where α, β and γ are known magnetic scalar potentials, the spherical r, θ and φ space coordinates of the continuity equation are transformed to coordinates which define directions parallel and perpendicular to the magnetic field thus putting the equation in a form suitable for numerical integration.  相似文献   

4.
Ten years data set is used to separate the influence of IMF Bz-component and solar wind speed on the dawn-dusk component of magnetic variations in the summer polar cap. The reference level was chosen from most quiet periods of winter solstices (small polar cap and auroral zone conductivity) to exclude the inner source component. The linear regression analysis was then used to calculate the PC variation response to Bz under different ranges of solar wind speed. As a result, taking into account the value of polar cap conductivity and effects of induced currents, the response of dawn-dusk electric field component to Bz and V was obtained and the potential difference across the polar cap was estimated to be Δ?(kV) ≈ 6(V300)2 ? 9Bz(γ) for Bz ? + 1γ. The results give a proof for simultaneous operation in the magnetosphere of two electric field generation mechanisms, related to the boundary layer processes and magnetic field reconnection. The above-mentioned functional form was shown to correlate effectively with AE index (R = 0.73).  相似文献   

5.
The change of energy of a collisionless, two-fluid plasma consists of the adiabatic gain or loss of energy, which is due to the work done by the electromagnetic forces, and of the non-adiabatic change associated with the presence of the “rest” field E1 = E + (1c)V×B. The non-adiabatic gain or loss of energy per unit ti may be expressed by the relation
Q=E·i+ceNB2f?×f
where i is the density of conductive current, N the ion number-density, and f (f?) the sum of inertia and pressure divergence of ions (electrons). Symbols of parallelism refer to the direction of B.A special case of non-adiabatic energization of a slowly convecting plasma sheet plasma is discussed in some detail. Regardless of the value of V, the non-adiabatic energization may significantly exceed any conceivable energization associated with the electric field ?(1c) V × B.  相似文献   

6.
Impulsive penetration of a solar wind filament into the magnetosphere is possible when the plasma element has an excess momentum density with respect to the background medium. This first condition is satisfied when the density is larger inside than outside the plasma inhomogeneity. In this paper we discuss the second condition which must be satisfied for such a plasma element to be captured by the magnetosphere: the magnetization vector (M) carried by this plasma must have a positive component along the direction of B0, the magnetic field where the element penetrates through the magnetopause. On the contrary, when M · B0 < 0, the filament is stopped at the surface of the magnetopause. Thus the outcome of the interaction of the filament with the magnetosphere depends upon the orientation of the Interplanetary Magnetic Field. For instance, penetration and capture in the frontside magnetosphere implies that Bsw, the Interplanetary Magnetic Field, has a southward, or a small northward, component. Penetration and capture in the northern lobe of the magnetotail is favoured for an IMF pointing away from the Sun; in the southern lobe Bsw must be directed towards the Sun for capture. Finally, for capture in the vicinity of the polar cusps the magnetospheric field (B0) assumes a wider range of orientations. Therefore, near the neutral points, it is easier to find a place where the condition M · B0 > 0 is satisfied than elsewhere. As a consequence, the penetration and capture of solar wind irregularities in the cleft regions is possible for almost any orientation of the interplanetary magnetic field direction. All observations made to date support these theoretical conclusions.  相似文献   

7.
In the recent estimation by Maltsev and Lyatsky (1984) of the group velocity of surface waves on the inner boundary of the plasma sheet, the effect of the curvature of the field lines of the ambient magnetic field of the Earth on the spectrum has been assessed. The authors have not accounted for the fact, however, that the group velocity of the compressional surface magnetohydrodynamic waves itself is nonzero transverse to the magnetic field—a characteristic which has been omitted in the spectrum of Chen and Hasegawa (1974), being used by Maltsev and Lyatsky.This characteristic of compressional surface MHD waves is inherent for the spectrum ω = (k6k)VA(k26 + 2k2)12, obtained by Nenovski (1978) in the cold plasma limit VA ? VS(VA is Alfvén velocity, and VS, sound velocity). A comment has been made on the restrictions, proceeding from the approximation, used by Maltsev and Lyatsky. The estimation of the velocities for movements of auroral riometer absorption bays have been reviewed.  相似文献   

8.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

9.
We analyze linear resonance oscillations in a non-uniform one-fluid finite-β plasma, which is oversimplified to understand easily fundamental characteristics of the resonance oscillations. A linear resonance oscillation of localized slow magnetosonic mode 2s = ω2A(1 + V2AV2s)], which has the diamagnetic property in a uniform plasma, is newly found to be excited in the radially non-uniform plasma. The localized slow resonance indicates a radially polarized compressional oscillation (δB ? δBH ? δBD). The sense of the Alfvénic polarizations in the H-D plane near the resonant point is a function of both the propagation in the azimuthal direction and the slope of wave amplitude in the radial direction, whereas the sense of the resonant slow magnetosonic polarizations changes in accordance only with the switch in the azimuthal propagation direction. Further multi-satellite studies are necessary to establish the resonant structures of the slow magnetosonic waves in the magnetosphere.  相似文献   

10.
Observations of the trail caused by the meteorite which fell around Dhajala, Gujarat (India), on 28 January 1976 have been used to compute the probable orbit of the meteoroid in space. The cosmic ray effects in the meteorite fragments indicate high mass ablation (?90%), suggesting a high velocity (?20 km/sec) of entry into the Earth's atmosphere. The atmospheric trajectory is reasonably well documented and its deviation from the projected ground fallout can be understood in terms of the ambient wind pattern. The apparent radiant of the trail was at a point in the sky with right ascension 165°, declination +60°. Considering the errors in estimating the radiant, we get a range of orbits with a = 2.3 ± 0.8 AU, e = 0.6 ± 0.1, and i = 28 ± 4° with the constraints of a ? 1.5 AU and V < 25 km/sec (which causes nearly complete evaporation of the meteoroid). Taking V = 21.5 lm/sec as indicated by the measured mass ablation of the meteorite, the orbital elements are deduced to be a = 1.8 AU, e = 0.59, i = 27°.6, ω = 109°.1, Ω = 307°.8, and q = 0.74.  相似文献   

11.
Nearly 2500 shock crossings from HEOS-1, HEOS-2 and 5 IMP spacecraft, covering most of the northern and part of the southern bow shock surface for X values X > ? 20 RE, have been used to carry out a detailed study of the three-dimensional shape and location of the bow shock. The influence of the different solar wind conditions has been reduced by normalising the observed crossings to an average solar wind dynamical pressure (N0 = 9.4 cm?3, V0 = 450 kms?1). It has been shown that the shock surface is symmetric with respect to the ecliptic plane and intersects the coordinate axes at 11.9 RE (X), + 27.0 and ? 22.9 RE (Y), + 23.9 and ? 24.5 RE (Z) for the average dynamical pressure (N0 = 9.4 cm?3, V0 = 450kms?1, with MA = 9.3, MMS = 6.1). The observed aberration of the shock surface is 8.9° ± 1°, i.e. 5.1° larger than the aberration predicted from the Earth's motion. This asymmetry around the solar wind apparent direction is described by equation (6) for different Mach numbers MA and confirms the predictions of Walters [J. geophys. Res. 71, 1319 (1964)] and Michel [J. geophys. Res. 70, 1 (1965)].The magnetosheath thickness is 3.3 RE along the X-axis, 11.4 RE (+ Y), 8.7 RE (? Y), 9.9 RE (+Z) and 10.9 RE along the negative Z axis.  相似文献   

12.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

13.
An extensive study of DMSP photographs and the simultaneous interplanetary magnetic field data suggests that the quantity defined by
S=∫τ0D ? ФN)dt
has a fundamental importance in substorm processes, where ΦD and ΦN denote the production rate of merged (or open) field lines along the dayside X-line and of reconnected (or closed) field lines along the nightside X-line, respectively; t = 0 is measured from the time when the Bz component begins to decrease after a prolonged period of a large positive Bz value. It is shown, first of all, that substorms occur so long as S > 0, regardless of the sign of the Bz component and its changes (namely, the southward and northward turnings) and of its time derivative as well. Secondly, the intensity of substorms is proportional to S2. By introducing the quantity S, the recent confusion of the problem of the roles of the north-south component of the interplanetary magnetic field on substorm processes can be removed.Since S is equal to the amount of the open magnetic fluxes at a time reckoned from t = 0, it is proportional to (A1 ? A0), where A0 denotes the minimum polar cap area (namely, the area bounded by the minimum auroral oval) and A1 the polar cap area at an arbitrary time t. Therefore, substorms can occur whenever the auroral oval is larger than its minimum size. Further, an intense substorm tends to occur along a large oval.The quantity S can also be considered as an excess flux, and thus the substorm can be considered as a process by which the magnetosphere tends to remove sporadically the excess energy associated with S.  相似文献   

14.
A ring current model has been obtained which permits calculations ofDst variations on the Earth's surface during magnetic storms. The changes in Dst are described by the equation
ddtDsto = F(EM)?Dstotau;
where Dsto = Dst-bp12+~tc; p = mnv2 is solar wind pressure; F(EM) is the function, controlled by the electromagnetic parameters of interplanetary medium, of injection into ring current ; τ is the constant of ring current decay. C = Cuτ?=18 nT, where C is the level of the Dst-variation field measurements; ? is the injection function characterizing the quasisteady-state injection of energy into the ring-current region. The constant Ç is determined from the condition that the change of the ring current energy from magnetic storm commencement to end should equal the difference between the injected and dissipated energy throughout the storm. The values of the factors b and τ were found by the method of minimizing the sum of the quadratic deviations of the calculated Dst from the values observed throughout the storm : b = 0.23 nT/(eV cm?3)12, τ = 8.2 h at Dst? ? 55 nT and τ = 5.8 h at -120 ? Dst ? — 55 nT. The injection function F(EM) is of the form F(EM) = d(Ey? A) at the values of the azimuthal component of the solar wind electric field Ey ? A, and F(EM) =0 at A?Ey.d = ? 1.2 × 10?3 Ts?1 (mV/m)?1 and A = ? 0.9 mV m?1 . Thus, the injection to ring current is possible at the northward Bz component of the IMF.  相似文献   

15.
An intense, localized auroral disturbance observed by Intercosmos-Bulgaria-1300 satellite in the morning sector at the altitude 850 km is analyzed in detail. The disturbance is characterized by strong “jumps” of electric and magnetic fields reaching ~ 80 mV/m and ~ 100 nT, fluctuations of ion density (Δn/n ~ 70%) and bursts of downward and upward energetic electron fluxes. Electric and magnetic disturbances display a distinct spatial-temporal relationship typical for the standing quasi-monochromatic wave (? ~ 1 Hz, λx ~ 10 km). The ratio of amplitudes of electric and magnetic fluctuations is equal to Alfvén velocity (ΔE/ΔBvA/c). However, a strong parallel component of the electric field (~ 30 mV/m) and large ion density fluctuations indicate significant changes of plasma properties (the effects of anomalous resistivity are possible).  相似文献   

16.
A 225-dimensional particle-mesh computer model for the simulation of the current-sheet region of the geomagnetic tail is described. Important features are (a) the use of Fast Fourier techniques for the efficient solution of Ampere's equation, (b) the incorporation of sources and sinks of particles, (c) facilities for simulating finite width effects and (d) the option of including a normal magnetic field component linking through the sheet.Simulations carried out using this model indicate that current sheets with a non-zero normal magnetic field component and an infinite width are stable. The particles trace out Speiser-like orbits in such a case. Sheets with Bnormal = 0 and a finite width are unstable with respect to the ion tearing-mode instability. However the presence of a normal magnetic field stabilises the system provided ρ0<2Ly where ρ0 is the characteristic length associated with the normal field and where Ly is the width of the sheet.On the basis of these results it is suggested that a geomagnetic substorm occurs when the normal magnetic field drops below the critical value needed for stability.  相似文献   

17.
Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than ≈ 3g0BiB0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0 (Bi denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEp + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Ep in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (~ 1 km) auroral arc.  相似文献   

18.
A parametric excitation of the Alfvén wave (kA, ωa) by the magnetosonic wave (K1fs, ω1fs), which propagates obliquely to the static magnetic field, has been analyzed. The theoretical model for a one-fluid with uniform, unbounded, ideally conducting and compressible plasma is employed. The resonance conditions are chosen such as, k1fs = k1fs + kA and ω1fs ? ωA = δω2fs. The p wave is assumed to be strong enough, so that the pump wave is given as a constant. In both the case of the standing and the propagating pump the growth rates of the excited waves depend on not only the pump power but also the β-ratio. In the standing pump the threshold pump intensity of the oscillating instability is zero at the perfect matching. It is found that we can obtain a larger growth rate of the parametric excitation of Alfvén wave by the fast magnetosonic pump wave for θ1f ~ 70–80° and the occurrence regions of parametric excitations are localized at the resonance point in the magnetosphere (βme/mi). It is concluded that the parametric instability of Pc3 range HM-waves is the more possible theory than the linear resonance theory.  相似文献   

19.
20.
The motion of charged particles is examined in the case of a homogeneous magnetic field B together with an orthogonal electric field E, which has a gradient ▽E parallel to E. If
B2q2m2 ? q▽Em > 0
, the particles drift at right angles to E and B with a modified gyrofrequency and produce a current in that direction. If
B2q2m2 ? q▽Em < 0
, the particles not only drift in the direction of E × B but are also accelerated in the direction of E, in which direction they also produce a current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号