首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
HF radar observations of mid-latitude sporadic-E irregularities carried out with the Valensole radar in South France are compared with simultaneous ionosonde measurements underneath the irregularity zones. In a previous study of Valensole radar data, it has been shown that HF backscatter from the night-time mid-latitude E region is usually associated with largescale wave-like modulations. To obtain more information on the geophysical conditions prevailing during backscatter events, a new experiment was performed which also included a vertical ionosonde beneath the scattering region. The data to be presented here are from two periods when radar scattering appeared simultaneously with large variations in the virtual height and the Doppler velocity of F-layer reflected echoes measured with the vertical ionosonde, indicating very clearly the passage of atmospheric gravity waves (AGWs). The effect of the atmospheric waves on the sporadic-E layer is not always as marked as it is in the F region. In the first event, the passage of the AGWs is accompanied by an upward followed by a downward movement of the Es-layer. The apparent descending movement of the Es-layer from 135 to 110km in less than 10 min corresponded to a positive (downward) Doppler velocity of 35 m/s measured by the vertical ionosonde, and was accompanied by a range variation in the radar scattering region with a negative rate of about 90–110 m/s. In the second event, the Es-layer is not as strongly disturbed as in the previous one, but, nevertheless, the range variations of the scattering region can still be associated with height fluctuations of the Es-layer.  相似文献   

2.
The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2-and KP for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding 600 m s–1 are observed with a duration of 5 min and a repetition period of 8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.  相似文献   

3.
Zusammenfassung An künstlich erzeugten unterkühlten Nebeln wurde die Eiskeimbildung his –85°C untersucht. Bei tiefen Temperaturen treten so hohe Eisteilchendichten auf, daß sie erst an fotografischen Aufnahmen der Eiswolken bei geeigneter Vergrösserung bestimmt werden konnten. Die von anderer Seite bei –40°C behauptete und mit homogener Keimbildung gedeutete Vervielfachung der Eisteilchenzahl konnte nicht festgestellt werden. Meistens steigt die Teilchendichte spätestens bei –30°C stark an, bleibt dann aber zwischen –40°C und –65°C praktisch konstant bei im Mittel 174 Eisteilchen pro cm3. Dieser Uebergang, der an der vollständigen Vereisung der Tröpfchenwolke direkt zu erkennen ist, findet je nach Wetterlage zwischen –40 und –50°C statt und muß somit noch durch Gefrierkerne hervorgerufen sein.Erst bei Annäherung an –70°C bilden sich in Uebereinstimmung mit früheren Ergebnissen des Verf. ausserordentlich dichte und beständige Nebel aus feinsten Eisteilchen mit. Anzeichen von homogener Bildung.
Summary The formation of ice germs down to –85°C was investigated with artificial supercooled nebula. At low temperatures the densities of ice particles are so high that they could only be determined by photographs of the ice clouds with suitable enlargements. The multiplication of the number of ice particles which, according to assertions from another side, should take place at –40°C and which was interpreted by homogeneous formation of germs, could not be ascertained. In most cases the density of particles increases considerably at –30° at the latest, and then remains practically constant between –40 and –65°C with an average of 174 ice particles per cm3. This transition which can directly be observed at the complete icing of the cloud of droplets, takes place — according to the weather conditions —between –40 and –50°C and must, therefore, also be caused by freezing nuclei.Extremely dense and constant nebula consisting of the finest ice particles with signs of homogeneous formation are only formed with an approximation to –70°C, which is in good agreement with earlier results of the author.
  相似文献   

4.
Load relaxation and cross-head displacement rate-change experiments have been used to establish log10 stress intensity factor (K) versus log10 crack velocity (v) diagrams for double torsion specimens, of synthetic quartz cracked on thea plane in liquid water and moist air.For crack propagation normal toz and normal tor at 20°C,K Ic (the critical stress intensity factor) was found to be 0.852±0.045 MN·m–3/2 and 1.002±0.048 MN·m–3/2, respectively.Subcritical crack growth at velocities from 10–3 m·s–1 to 10–9 m·s–1 at temperatures from 20°C to 80°C is believed to be facilitated by chemical reaction between the siloxane bonds of the quartz and the water or water vapour of the environment (stress corrosion). The slopes, of isotherms in theK-v diagrams are dependent upon crystallographic orientation. The isotherms have a slope of 12±0.6 for cracking normal tor and 19.9±1.7 for cracking normal toz. The activation enthalpy for crack propagation in the former orientation in liquid water at temperatures from 20°C to 80°C is 52.5±3.8 kJ·mole–1.A discussion is presented of the characteristics of theK-v diagrams for quartz.  相似文献   

5.
Summary The real area of contact has been determined, and measurements of the maximum and average surface temperatures generated during frictional sliding along precut surfaces in Tennessee sand-stone have been made, through the use of thermodyes. Triaxial tests have been made at 50 MPa confining pressure and constant displacement rates of 10–2 to 10–6 cm/sec, and displacements up to 0.4 om. At 0.2 cm of stable sliding, the maximum temperature decreases with decreasing nominal displacement rate from between 1150° to 1175°C at 10–2 cm/sec to between 75° to 115°C at 10–3 cm/sec. The average temperature of the surface is between 75 and 115°C at 10–2 cm/sec, but shows no rise from room temperature at 10–3 cm/sec. At 0.4 cm displacement, and in the stick-slip mode, as the nominal displacement rate decreases from 10–3 to 10–6 cm/sec, the maximum temperature decreases from between 1120° to 1150°C to between 1040° to 1065°C. The average surface temperature is 115° to 135°C at displacement rates from 2.6×10–3 to 10–4 cm/sec.With a decrease in the displacement rate from 10–2 to 10–6 cm/sec, the real area of contact increases from about 5 to 14 percent of the apparent area; the avergge area of asperity contact increases from 2.5 to 7.5×10–4 cm2. Although fracture is the dominate mechanism during stick-up thermal softening and creep may also contribute to the unstable sliding process.  相似文献   

6.
Summary Working on the hypothesis that atmospheric ice-forming nuclei are largely of terrestrial origin, the nucleating ability of various types of soil particles and mineral dusts has been investigated. Of the thirty substances tested, twenty-one, mainly silicate minerals of the clay and mica groups, were found to produce ice crystals in supercooled clouds and also on supercooled soap films at temperatures of – 18° C, or above, and of these, ten were active above – 12° C. The most abundant of these is kaolinite with a threshold temperature of – 9° C. Ten natural substances, again mainly silicates, were found to become more efficient ice nuclei having once been involved in ice-crystal formation, i.e. they could be pre-activated or «trained». Thus, ice crystals grown on kaolinite nuclei, which are initially active at –9° C, when evaporated and warmed to near 0° C in a dry atmosphere, leave behind nuclei which are thereafter effective at – 4° C. Particles of montmorillonite, another important constituent of some clays, and which are initially inactive even at –25° C, may be pre-activated to serve as ice nuclei at temperatures as high as –10° C. It is suggested that although such particles can initially form ice crystals only at cirrus levels, when the ice crystals evaporate they will leave behind some «trained» nuclei which may later seed lower clouds at temperatures only a few degrees below 0° C. On this hypothesis, the fact that efficient nuclei are occasionally more abundant at higher levels would not necessarily imply that they originate from outer space. Indeed, in view of our tests on products of stony meteorites, produced both by grinding and vaporization, which show them to be ineffective at temperatures above – 17° C, it seems likely that atmospheric ice nuclei are produced mainly at the earth's surface, the clay minerals, particularly kaolinite, being a major source.Although a good deal of work has been carried out in different laboratories on the ice-nucleating ability of a wide variety of inorganic compounds, there has been little agreement in the results. Careful tests carried out in our laboratory have revealed a number of reasons for this. Spurious results may be obtained because of the presence, in the air or the chemicals, of small traces of silver or free iodine, leading to the formation of silver iodide: if all such trace impurities are removed, many of the substances that have been claimed to provide efficient ice nuclei are found to be quite ineffective. It is dangerous to infer that all twinkling particles in a water cloud are ice crystals since particles of some seeding agents glitter even at positive temperatures. The threshold temperature of a nucleant will depend upon the criterion adopted for the onset of nucleation, i.e. upon the fraction of the total number of particles of seeding agent which are activated; this, in turn, will depend upon the fraction of particles which happen to possess suitable crystallographic faces for nucleation. Much may also depend upon the manner in which the test is performed. Since some nucleating materials produce ice crystals only after a delay of 30 seconds or more, they may appear to be ineffective if tested in the transient cloud of an expansion chamber but highly effective if allowed to remain in an ice-supersaturated atmosphere for a minute or more. Again, we have found that the efficiency of some nuclei is governed by the supersaturation as well as the temperature of the environment, and the supersaturation regimes in expansion, diffusion, and mixing-cloud chamber may be widely different. Highly soluble particles, although able to act as «sublimation» nuclei in atmospheres super-saturated relative to ice but sub-saturated relative to water, on entering a water cloud go quickly into solution and lose their nucleating ability.Inorganic substances which definitely nucleate a supercooled water cloud in a mixing-cloud chamber at temperatures of –15° C and above are: AgI (–4° C), PbI2 (–6° C), CuS (–6° C), Ag2S (–8° C), Ag2O (–9° C), HgI2 (–8° C), V2O5 (–14° C), Cu2I2 (–15° C), the figures in brackets indicating the threshold temperatures at which about one particle in 104 becomes active as an ice nucleus. Cadmium iodide (–12° C), ammonium fluoride (–9° C) and iodine (–14° C) are examples of salts which will act as sublimation nuclei in an ice-supersaturated atmosphere and will nucleate a supercooled soap film, but which are ineffective in a water cloud because of their solubility.Although the most efficient nucleating agents tend to be hexagonal in structure, there are some striking exceptions e.g. Ag2S, Ag2O, HgI2, but in most cases, we have been able to find a low-index crystal surface on which the ice lattice could grow with a misfit of only a few per cent.In an attempt to investigate the nucleation mechanism in more detail, we have studied the growth of ice on single crystals of various nucleating agents. Perfect orientation of ice crystals has so far been observed on the basal faces of silver iodide, lead iodide, cupric sulphide, cadmium iodide, and freshly-cleaved mica, on the (001) plane of iodine, and on the (010) plane of mercuric iodide.  相似文献   

7.
8.
Intraplate seismic activity in Bolivia is mainly located in the central region (16°–19°S, 63°–67°W) which includes the East Andean Cordillera and the Sub-Andean Sierras. At this region there is a bend in the trend of the main geological structures from NW-SE in the north to N-S in the south. Focal mechanisms have been calculated for 10 earthquakes of magnitudes 4.9–5.6, using first motionP-waves from long period instruments. Their solutions correspond to reverse faulting, some with a large component of strike-slip motion. Their solutions can be grouped into two types; one with pure reverse faulting on planes with azimuth NW-SE and the other with a large strike-slip component on planes with azimuths nearly N-S or WNW-ESE. The maximum stress axis (P-axis) is practically horizontal (dipping less than 5°) oriented in a mean N56°E direction. This orientation may be related with the direction of compression resulting from the collision of the Nazca plate against the western margin of the South American continent. Wave-form analysis of long-periodP-waves for one event restricts the focal depth to 8 km in the Sub-Andean region. Seismic moments and source dimensions determined from spectra of Rayleigh waves are in the range of 1016–1017Nm and 17–24 km, respectively. The Central Bolivia region can be considered as a zone of intraplate deformation situated between the Bolivian Altiplano and the Brazil shield.  相似文献   

9.
Summary The dolerite dyke of post-lower Gondwana age reported earlier by the authors [5]2) has been taken for detailed magnetic study. Seven magnetic traverses have been taken across the dyke using Schmidt vertical force variometer. Negative anomalies varying from 1400 to 2200 gammas have been observed. Magnetic susceptibility of samples from the dyke has been determined on both cores and crushed material, using the Model MS-3 susceptibility bridge. The average susceptibility of 20 samples has been found to be 1930x10–6 C.G.S. units. Direction and intensity of remanence on 10 oriented samples have been determined by an Astatic magnetometer. The average intensity of remanence has been found to be 3.13x10–3 C.G.S. units and the average direction has a declination of 323° and inclination-68° (up dip). The Koenigsberger ratio varies from 1.6 to 5.6. The high negative magnetic anomalies have been explained in terms of remance-that more than 80% of the anomaly is due to remance and that negative anomalies are due to negative inclination of remanent direction of the rocks. The magnetic direction for the dyke gave the position for Dhanbad as 51° south latitude in Jurassic period. This is in conformity with the deductions made by other workers from the palaeomagnetic studies of the Deccan and Rajmahal traps. The virtual geomagnetic pole in Jurassic period as deduced from the palaeomagnetism of the dyke has a position of latitude 8 1/2°N and longitude 71°W, in the southern Carribean. On palaeomagnetic evidence this dyke has been correlated with Rajmahal traps of eastern Bihar.  相似文献   

10.
Augustine, an island volcano in Lower Cook Inlet, southern Alaska, erupted in January, 1976, after 12 years of dormancy. By April, when the eruptions ended, a new lava dome had been extruded into the summit crater and about 0.1 km3 of pyroclastics had been deposited on the island, mainly as pyroclastic debris avalanches and pumice flows. The ventclearing phase in January was highly explosive and we have been able to document 13 major vulcanian eruptions.The timing, thermal energy, mass loading of fine particles and the horizontal dispersion of these eruption clouds were determined from radar measurements of cloud height, reports of pilots flying in plumes, satellite photography, seismic records and infrasonic detection of air waves. A lower estimate of the mass of fine (r < 68 μm) particles injected into the troposphere from the 13 main eruptions in January is 5.5–18 × 1012 g. The corresponding mass loading of fine particles within individual eruption clouds is 0.3–1 g m−3. We calculated thermal energies of 4 × 1014 to 35 × 1014 J for individual eruptions by applying convective plume rise theory to observed cloud heights and seismically determined eruption durations. This energy range compares favorably with the 4–16 × 1014 J of thermal energy, calculated from the cooling of juvenile material contained in a typical eruption cloud.The vulcanian eruption clouds stayed intact for at least 700 km downwind. Satellite images in both visible and infrared wavebands, showing the Gulf of Alaska just after sunrise on January 23, reveal a series of puffs strung out downwind from the volcano, 20–30 km in diameter and with their tops at altitudes of about 8 km, overlying a continuous plume at altitude 4 km. Each puff corresponded to a seismically and infrasonically timed eruption. A substantial portion of the material injected into the atmosphere between January 22 and 25 was rapidly transported by the subpolar jet stream through southwestern Canada and the western United States, then northeast across the States into the Atlantic. The clouds were observed passing over Tucson, Arizona, on January 25 at an elevation of 7 km.Several of the eruptions penetrated into the stratosphere. Sun photometer measurements, taken at Mauna Loa, Hawaii, six weeks after the eruption, showed an increased stratospheric optical thickness of 0.01 (wavelength 0.5 μm), which decayed in about 5 months. The maximum column mass loading of the veil was 4–10 × 10−7 g cm−2. The mass of the veil, spread-ever a fourth of the earth's surface, is 10 to 100 times larger than can be accounted for by assuming that injected ash and converted sulfate particles from the 13 main Augustine eruptions are the only components contributing to the stratospheric turbidity observed at Mauna Loa.  相似文献   

11.
The large-scale terms in the vorticity equation are evaluated usingKrishnamurti's (1971a, b) summer mean winds at 200 mb for a global belt from 25°S to 45°N. The production of vorticity by the divergent wind field is found to be imbalanced over all of the tropical and subtropical belt. As a result there is a requirement for a sub-grid scale (space or time) mechanism which removes negative vorticity from the regions of strong divergence (Tibetan and Mexican highlands) and removes positive vorticity from the regions of strong convergence (mid-oceanic troughs) at 200 mb during northern summer at a rate of approximately 4×10–10 sec–2. As suggested byHolton andColton (1972), in regions of strong and persistent convection, such as the Tibetan Plateau, deep cumulus clouds can account for this transport. However, the mechanism for removing positive vorticity in the vicinity of the upper tropospheric mid-oceanic troughs is still an intriguing and open question.On leave-of-absence at the National Science Foundation, Climate Dynamics Research Section.  相似文献   

12.
HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°2463N–5°3738W) during the International Equatorial Electrojet Year (1993–1994). The HF radar is a high–resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.  相似文献   

13.
The 16-day planetary wave in the mesosphere and lower thermosphere   总被引:3,自引:0,他引:3  
A meteor radar located at Sheffield in the UK has been used to measure wind oscillations with periods in the range 10–28 days in the mesosphere/lower-thermosphere region at 53.5°N, 3.9°W from January 1990 to August 1994. The data reveal a motion field in which wave activity occurs over a range of frequencies and in episodes generally lasting for less than two months. A seasonal cycle is apparent in which the largest observed amplitudes are as high as 14 ms−1 and are observed from January to mid-April. A minimum in activity occurs in late June to early July. A second, smaller, maximum follows in late summer/autumn where amplitudes reach up to 7–10 ms−1. Considerable interannual variability is apparent but wave activity is observed in the summers of all the years examined, albeit at very small amplitudes near mid summer. This behaviour suggests that the equatorial winds in the mesopause region do not completely prevent inter-hemispheric ducting of the wave from the winter hemisphere, or that it is generated in situ.  相似文献   

14.
Eighteen digital AVHRR (advanced very high resolution radiometer) data sets from NOAA-6 and NOAA-9 polar-orbiting satellites recorded between 27 March and 7 April 1986 depict the eruptive activity of Augustine volcano, located 280 km SW of Anchorage, Alaska. The synoptic view (resolution of either 1.1 or 4.4 km), frequent coverage (often twice a day), and multispectral coverage (five bands: 0.58–0.68; 0.72–1.1; 3.55–3.93; 10.5–11.3; and 11.5–12.5 m) makes the AVHRR broadly applicable to analyzing explosive eruption clouds. The small scale of the Augustine activity (column heights of 2–13 km and eruption rates of 2x106–8x107 metric tonnes/day) facilitated intensive multispectral study because the plumes generally covered areas within the 550x550 km area of one easily manipulated image field. Hourly ground weather data and twice-daily radiosonde measurements from stations surrounding the volcano plus numerous volcanological observations were made throughout the eruption, providing important ground truth with which to calibrate the satellite data. The total erupted volume is estimated to be at least 0.102 km3. The pattern of changing eruption rates determined by satellite observations generally correlate with more detailed estimates of explosion magnitudes. Multispectral processing techniques were used to distinguish eruption clouds from meteorological clouds. Variable weather during the Augustine eruption offered an opportunity to test various trial algorithms. A ratio between thermal IR channels four and five, served to delineate the ashbearing eruption plumes from ordinary clouds. Future work is needed to determine whether the successful multispectral discrimination is caused by wavelength-dependent variable emission of silicate ash or reflects a spectral role of sulfuric acid aerosol in the plume.  相似文献   

15.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   

16.
A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5○N, 77○E, 0.5○N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161). Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6○N gm) and at Narsarsuaq, Greenland (70.6○N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730–1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV m−1 and it increases with height, while it is about 1.0 mV m−1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.  相似文献   

17.
A European campaign of ground-based radar, lidar and optical measurements was carried out during the winter of 1996/1997 (28 December–2 February) to study lee waves in the northern part of Scandinavia. The participants operated ozone lidars, backscatter lidars and MST radars at ALOMAR/Andoya and Esrange/Kiruna, and an ALIS imaging system in Kiruna. The Andoya site was generally windward of the Scandinavian mountains, the Kiruna site on the leeward side. The goal of the experiment was to examine the influence of lee waves on the formation of Polar Stratospheric Clouds (PSCs). This paper studies the radar data from MST-radar ESRAD located at Esrange [68.°N, 21.°E], i.e. in the lee of the mountains. We present three cases where strong lee waves were observed: in one case they propagated upwards to the lower stratosphere and in the other two cases they were trapped or absorbed in the troposphere. We examine the local waves and the direction and strength of the local wind using the radar, the synoptic meteorological situation using weather maps (European Meteorological Bulletin) and the synoptic stratospheric temperatures using ECMWF data. We observed that waves propagate up to the stratosphere during frontal passages. When anticyclonic ridges are present, the propagation to the stratosphere is very weak. This is due to trapping of the waves at or below the tropopause. We also show that the radar data alone can be used to characterise the different weather conditions for the three cases studied (through the variation of the height of the tropopause). The synoptic stratospheric temperatures in the three cases were similar, and were above the expected threshold for PSC formation. Lidar and visual observation of PSCs and nacreous clouds, respectively, showed that these were present only in the case when the lee waves propagated up to the lower stratosphere.  相似文献   

18.
Characteristics of cloud drop spectra were studied using 400 samples obtained from 120 warm cumulus clouds formed during the summer monsoon season.The total concentration of cloud drops (N T) varied from 384 to 884 cm–3 and the maximum concentration was observed in the layer below the cloud-top. The width of the drop spectrum was broader in the cloud-base region and in the region below the cloud-top. The spectrum was multimodal at all levels except in the cloud-top region where it was unimodal. The concentration of drops with diameter greater than 50 m (N L) varied from 0.0 to 0.674 cm–3.N L was larger in the cloud-base region.N L decreased with height up to the middle level and thereafter showed an increase. In the cloud-top region no large drops were present. The computed values of the liquid water varied between 0.132 and 0.536 g m–3 and the mean volume diameter (MVD) varied between 8.1 and 12.0 m. The LWC and MVD showed a decrease with height except in the middle region of the cloud where the values were higher than the adjacent levels. The dispersion of the cloud drops was lower (0.65) in the cloud-top region and higher (1.01) in the cloud-base region.The observed cloud microphysical characteristics were attributed to vertical mixing in clouds induced by the cloud-top gravity oscillations (buoyancy oscillations) generated by the intensification of turbulent eddies due to the buoyant production of energy by the microscale-fractional-condensation (MFC) in turbulent eddies.  相似文献   

19.
Zusammenfassung Zwischen 50° bis 85°N Breite wurde die atmosphärische CO2-Konzentration während mehrerer Messflüge registriert. Diese war oberhalb der Tropopause bis zu 7 ppm (im Mittel etwa 2 ppm) niedriger als in der oberen Troposphäre. Im Jahresmittel entspricht diese CO2-Konzentrationsdifferenz einem Fluss von etwa 10–2 g CO2/cm2 Jahr aus der nördlichen Troposphäre in die Stratosphäre. Die Bedeutung dieser CO2-Konzentrationsunterschiede für den atmosphärischen CO2-Haushalt sowie für die Strahlungsbilanz im Tropopausenniveau kann erst nach Vorlage weiterer, über das ganze Jahr verteilter Messdaten erfolgen.
Summary CO2-concentration was measured during several flights in northern latitudes (50°–85°). Above Tropopause CO2-concentration was up to 7 ppm (as a mean some 2 ppm) smaller than in upper troposphere. As a mean this difference in CO2-concentration cm2 year conforms to a CO2-flux of some 10–2 g CO2/cm2 year from northern troposphere into stratosphere. The importance of these CO2-differences for atmospheric CO2-system and for radiation balance in tropopause-height may be considered as soon as more CO2-concentration data for the whole year are available.
  相似文献   

20.
The energy equation was applied to four limited regions to investigate the basic mechanisms through which area-averaged eddy kinetic energy is maintained during the northern winter. The regions selected for this study are as follows: extratropical North Pacific (24.2°N–44.6°N, 130°E–150°W), tropical eastern North Pacific (0°–19.6°N, 170°W–110°W), South China Sea and. Bay of Bengal (0°–19.6°N, 80°E–140°E), and Timor Sea and eastern Indian Ocean (0°–19.6°S, 80°E–140°E). The zonally averaged upper flows over the first region were found to be barotropically stable. In contrast, they were barotropically unstable over the second region; namely, eddy motions over the tropical eastern North Pacific are maintained by receiving energy from zonal flows via barotropic interaction. The third and fourth regions are characterized by the importance of the conversion process between eddy available potential and eddy kinetic energy.Contribution No. 77-5, Department of Meteorology, University of Hawaii, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号