首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
地下水流线的数值算法研究   总被引:3,自引:0,他引:3  
地下水流线的生成是数值模拟结果显示中的一个重点。根据地下水流线可方便分析地下水的运动态,而常见的工具不能满足要求。论文探讨并提出了流线的“质点追踪”生成算法,这为流线数据可视化显示及其地下水年龄计算提供了一定的依据。最后,进行了实例研究,结果显示了设计算法的正确性。   相似文献   

2.
地下水流场三维可视化研究进展与前景   总被引:3,自引:2,他引:1  
在系统回顾近10年来地下水流场三维可视化主要研究成果的基础上,结合笔者的研究实践,综述了地下水流场三维可视化研究进展。从三维表现形式上,把地下水流场的三维可视化表达方法分为5类:准三维写意可视化、准三维制图可视化、三维体视化、混合可视化和立体可视化。分别论述了每种方法的几何模型、空间分析和绘制技术等,并分析了三维可视化技术在地下水流场研究中的应用前景。  相似文献   

3.
基于费马原理和 Snell 定理,对三维 VSP两点射线追踪问题作了研究,给出了三维逐段迭代射线追踪算法的计算公式;同时考虑射线入射到界面时能量分配问题,探讨了三维介质条件下射线追踪计算方法。对斜井VSP三维任意起伏层状介质中多波进行正演模拟,结果表明:该方法可行性和有效性较高,计算速度快,且计算精度高。   相似文献   

4.
《山西地质》2010,(1):52-53,56
采用了一种基于Kriging算法的三棱柱三维可视化方法对地质体进行了可视化,其基本思想是首先用Kriging算法将空间任意的离散的数据点生成规则的点数据,将点数据划分成多个三棱柱,然后以三棱柱为基本单元进行地质体可视化。本系统是在Visual C++/OpenGL平台上开发而成,具有精度高、交互好的特点,经过实践运行,切实可行。  相似文献   

5.
旅行时射线追踪的精度和效率一直是影响地震层析成像质量和效果的关键因素。这里在三维近地表速度结构层析成像应用中,结合旅行时插值算法与最短路径算法,提出了一种三维初至波射线追踪算法。通过对双线性旅行时插值算法进行改进,并运用判定条件与简化插值计算公式进行快速计算,减少了插值次数,降低了运算量,同时也保证了较高的射线精度,有效地解决了三维射线追踪算法的计算低效率,射线精度不高的问题。  相似文献   

6.
地震走时层析成像法是一种利用不同地震台站连续接收到的地震事件,利用地震走时断层扫描反演地球内部速度分布的方法,主要分为正演(射线追踪)和反演两个环节。首先正演利用基于程函方程的快速行进法,实现了对入射波走时场和反射波走时场的计算,接着进行了射线追踪与走时灵敏度矩阵的计算,最后反演采用了子空间算法实现了反射波走时反演,反演成像结果可以分辨出异常体的形状和位置。  相似文献   

7.
地学模拟技术的一个发展方向是与地学过程分析密切结合,另一个发展方向是与数据可视化技术相结合。前者试图通过使用各种数学方法模拟地学随机现象,并对这些不良结构化或半结构化的地学问题进行定量化描述;后者运用计算机的三维可视化功能,在三维环境下将空间信息管理、地学解译、空间分析、地学统计与预测、三维图形可视化等技术相结合,实现计算可视化、分析可视化、过程可视化、结果可视化和决策可视化,并用于地学分析。回顾了地学中计算机三维地学建模技术、地质统计学和地学非线性现象模拟方法,并对该领域的发展进行了展望,认为加强地学模拟的理论体系、方法体系、技术体系的研究和实践既有着重要的理论意义,又有着重要的现实意义。  相似文献   

8.
基于F erm at原理和Sne ll定理对三维任意界面情况下的两点间GPR波传播射线追踪问题进行了研究,采用了一个适用于任意界面情况下计算反(折)射点的一阶近似公式,从任意给定的初始路径出发进行逐段迭代计算,给出了三维逐段迭代射线追踪算法的计算格式,并进行了三维介质下射线追踪计算。结果表明计算速度相当快,且其计算精度可以根据需要达到任意要求。在此基础上,根据雷达波传播规律,考虑每一段的能量损失。根据地质雷达的发射子波,最终获得三维介质中雷达波传播和接收记录。并将结果应用于实际剖面拟合中,提高了解释的精度。  相似文献   

9.
建立三维矿体模型是数字矿山、智慧矿山的基础.针对经典径向基函数曲面重建算法在原始数据稀疏时出现曲面边界自拟合及模型不连续现象,提出了一种集成多种机器学习模型的径向基函数曲面复杂矿体三维建模方法.该方法利用Stacking模型学习矿体轮廓线离散化点云数据的分布特征,建立表征矿体模型几何信息的有向点集;在此基础上提取边界点及法向量,通过Hermite型径向基函数建立隐式场,最后基于行进四面体算法建立三维矿体模型.与轮廓线拼接法、经典径向基函数曲面重建算法、简单克里金插值法相比,该方法能够有效减少曲面边界自拟合现象,减少模型多余孔洞,提高模型的连续性;建立的模型所切轮廓线与原始轮廓线相似度达75.14%,与人工干预程度较高的显式模型相当;在体积表征上与显式模型的差距达到最低.  相似文献   

10.
复杂介质的三维块状模型快速射线追踪   总被引:1,自引:1,他引:0  
三维复杂介质的射线追踪,是目前在生产实际中应用最广泛的正演模拟技术。这里采用了块状结构的建模方法构造复杂三维地质体,以试射法作为射线追踪的基本算法。在试射过程中,引入了聚类的基本思想进行聚类加密,提高了射线追踪的效率。为了得到光滑连续的地层曲面,采用基于方位角的平滑处理对曲面进行平滑,可以进一步提高三维射线追踪的计算速度。同时,通过对迭代算法的改进,能够保证复杂模型的快速射线追踪。实际地质模型的射线追踪结果证明,改进后的射线追踪方法能够有效地提高复杂介质三维模型的射线追踪速度。  相似文献   

11.
In this paper, we present a fast streamline-based numerical method for the two-phase flow equations in high-rate flooding scenarios for incompressible fluids in heterogeneous and anisotropic porous media. A fractional flow formulation is adopted and a discontinuous Galerkin method (DG) is employed to solve the pressure equation. Capillary effects can be neglected in high-rate flooding scenarios. This allows us to present an improved streamline approach in combination with the one-dimensional front tracking method to solve the transport equation. To handle the high computational costs of the DG approximation, domain decomposition is applied combined with an algebraic multigrid preconditioner to solve the linear system. Special care at the interior interfaces is required and the streamline tracer has to include a dynamic communication strategy. The method is validated in various two- and three-dimensional tests, where comparisons of the solutions in terms of approximation of flow front propagation with standard fully implicit finite-volume methods are provided.  相似文献   

12.
以流线、流面、汇点的概念为基础,对稳定流双井干扰和直线隔水边界附近涌水量理论公式进行对比分析,提出了二个虚拟界面,其中虚拟界面Ⅰ,运用流线、流面的性质,流线方程等给出证明;虚拟界面Ⅱ则通过半无限条形降落漏斗的分析,应用元流和总流的能量方程得到流量为零,流线为零的平面。在同样条件下,条形无限涌水量是半无限潜含水层涌水量的二倍。应用总流能量方程对三种情况水头损失的分析,解释了这种关系存在的合理性,得出虚拟界面Ⅱ,并以此得出该界面内的最大残余水头计算公式。将基坑降水运用虚拟界面简化为扇形,条形半无限含水层,从而实现单井预测,该方法应用到昊华水泥厂基坑降水中,预测效果理想。  相似文献   

13.
We discuss various strategies for parallelizing streamline simulators and present a single-phase shared memory implementation. The choice of a shared memory programming model is motivated by its suitability for streamline simulation, as well as the rapid advance of multicore processors, which are readily available at low-cost. We show that streamline-based methods are easily parallelizable on shared memory architectures through their decomposition of the multidimensional transport equations into a large set of independent 1D transport solves. We tested both a specialized explicit load balancing algorithm that optimizes the streamline load distribution across threads to minimize the time that any of the threads are idle, and the dynamic load balancing algorithms provided by OpenMP on the shared memory machines. Our results clearly indicate that built-in schedulers are competitive with specialized load balancing strategies as long as the number of streamlines per thread is sufficiently high, which is the case in field applications. The average workload per thread is nominally insensitive to workload variations between individual streamlines, and any load balancing advantage offered by explicit strategies is not sufficient to overcome associated computational and parallel overhead. In terms of the allocation of streamlines or streamline segments to threads, we investigated both the distributed approach, in which threads are assigned streamline segments, and the owner approach, in which threads own complete streamlines. We found that the owner approach is most suitable. The slight advantage that the distributed approach has in terms of load balancing is not enough to compensate for the additional overheads. Moreover, the owner approach allows straightforward re-use of existing sequential codes, which is not the case for the distributed approach in case of implicit or adaptive implicit solution strategies. The tracing and mapping stages in streamline simulation have low parallel efficiency. However, in real-field models, the computational burden of the streamline solves is significantly heavier than that of the tracing and mapping stages, and therefore, the impact of these stages is limited. We tested the parallelization on three shared memory systems: a 24 dual-core processor Sun SPARC server; an eight-way Sun Opteron server, representative of the state-of-the-art shared memory systems in use in the industry; and the very recently released Sun Niagara II multicore machine that has eight floating point compute units on the chip. We test a single-phase flow problem on three heterogeneous reservoirs with varying well placements (this system gives the worst case scenario as the tracing and mapping costs are not negligible compared to the transport costs). For the SPARC and Opteron system, we find parallel efficiencies ranging between 60 and 75 for the tracer flow problems. The sublinear speedup is mostly due to communication overheads in the tracing and mapping stages. In applications with more complex physics, the relative contributions of these stages will decrease significantly, and we predict the parallel performance to be nearly linear. On the Niagara II, we obtain almost perfect linear scalability even for the single-phase flow problem thanks to the lowered communication costs on these architectures that have a shared cache. This result is all the more satisfactory considering that future server designs will be akin to this system.  相似文献   

14.
A new numerical technique called the convolution-based particle tracking (CBPT) method is developed to simulate resident or flux-averaged solute concentrations in groundwater models. The method is valid for steady-state flow and linear transport processes such as sorption with a linear sorption isotherm and first-order decay. The CBPT method uses particle tracking to take advantage of the ability of particle-based approaches to maintain sharp fronts for advection-dominated transport problems common in groundwater modeling and because of the flexibility of the random walk method to simulate a wide range of possible forms of the dispersion tensor. Furthermore, the algorithm for carrying out the convolution and superposition calculation from particle tracking results is very efficient. We show that from a single particle tracking run, source term variability, sorption, and decay can all be simulated rapidly without rerunning the underlying transport model unless the flow field or dispersion parameters are changed. A series of verification simulations are presented to demonstrate the accuracy and efficiency of the CBPT method compared to more conventional particle tracking approaches.  相似文献   

15.
The trend toward unstructured grids in subsurface flow modeling has prompted interest in the issue of streamline or pathline tracing on unstructured grids. Streamline tracing on unstructured grids is problematic because a continuous velocity field is required for the calculation, while numerical solutions to the groundwater flow equations provide velocity in discretized form only. A method for calculating flow streamlines or pathlines from a finite-volume flow solution is presented. The method uses an unconstrained least squares method on interior cells and a constrained least squares method on boundary cells to approximate cell-centered velocities, which can then be continuously interpolated to any point in the domain of interest. Two-dimensional tests demonstrate that the method correctly reproduces uniform and corner-to-corner flow on fully unstructured grids. In three dimensions using regular hexahedral grids, the method agrees well with established semianalytical methods. Tests also demonstrate that the method produces physically realistic results on fully unstructured three-dimensional grids.  相似文献   

16.
This paper presents a novel methodology to model semi-steady state horizontal well flow performance in an anisotropic reservoir taking into account flow in the near-well region for an arbitrary well trajectory. It is based on an analytical productivity model describing coupled axial reservoir flow and radial well inflow. In order to apply this model in an anisotropic reservoir, the permeability field relative to the radial direction perpendicular to the well trajectory and the axial direction along the well trajectory must first be determined. A classical space transformation is used in concert with rotational transforms to obtain a virtual isotropic model. The transformation preserves the volumes and pressures. It is not a novel concept, but different from previous approaches in the sense that it is only applied in the near-well domain to formulate an equally isotropic media. As a result, the use of this virtual isotropic model requires the Dietz shape factor for an ellipse, transformed from the original cylindrical near-well domain. The Dietz shape factors are determined numerically in this research. The semi-steady state well/near-well model is implemented in a numerical simulator incorporating formation anisotropy and wellbore hydraulics. The specific productivity index along the well trajectory is generated using the virtual configuration. Numerical results for different anisotropy ratios and also incorporating frictional losses in the well are presented. Furthermore, the well/near-well model is applied in coupling with streamline reservoir model for a water flooding case. This appears to be the first coupling of a well hydraulics model and a streamline simulator. It presents the application of the well/near-well model in integrated reservoir simulation in an efficient and accurate manner. The results demonstrate that the coupling approach with a streamline reservoir model and the well/near-well is of great potential for advanced well simulation efficiently.  相似文献   

17.
曲线坐标系二维带自由表面强紊动水流数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
将追踪自由表面的流体体积(VOF)法应用于曲线坐标系下水流控制方程的求解中,计入流线弯曲对水流紊动特性的影响,建立了垂向二维强紊动水流的曲率修正的紊流模型,并对溢流坝反弧段的紊流特性进行了数值模拟。数值计算时,采用有限体积法离散水流的控制方程;物理变量,如:压力P、紊动参量κ、ε、γt等,采用交错方式排列(交错网格布置),用SIMPLEC算法求解离散方程。计算结果表明,得到的溢流坝反弧段的自由表面位置、速度场、压力场、剪应力分布和紊动能分布与实验结果吻合良好。  相似文献   

18.
Fast 3D Reservoir Simulation and Scale Up Using Streamtubes   总被引:1,自引:0,他引:1  
This paper presents an implementation of a semianalytical method for oil recovery calculation in heterogeneous reservoirs that is both fast and accurate. The method defines streamline paths based on a conventional single-phase incompressible flow calculation. By calculating the time-of-flight for a particle along a streamline and assigning a volumetric flux to each streamline, the cumulative pore volume of a streamtube containing the streamline can be calculated. Subsequently, the streamtube geometries are kept constant and the effects of the time varying mobility distribution in two-phase flow are accounted for by varying the flow rate in each streamtube, based on fluid resistance changes along the streamtube. Oil recovery calculations are then done based on the 1D analytical Buckley–Leverett solution. This concept makes the method extremely fast and easy to implement, making it ideal to simulate large reservoirs generated by geostatiscal methods. The simulation results of a 3D heterogeneous reservoir are presented and compared with those of other simulators. The results shows that the new simulator is much faster than a traditional finite difference simulator, while having the same accuracy. The method also naturally handles the upscaling of absolute and relative permeability. We make use of these upscaling abilities to generate a coarse curvilinear grid that can be used in conventional simulators with a great advantage over conventional upscaled Cartesian grids. This paper also shows an upscaling example using this technique.  相似文献   

19.
针对目前煤矿井下采用人工测量方法不准确和基于三轴光纤陀螺的钻孔定位成本较高等问题,设计了一种新型钻机开孔定向仪,介绍了仪器的总体方案及工作原理,搭建了基于MSG7100D-300陀螺和KXR94加速度计,以STM32单片机为CPU核心的硬件平台;系统采用静态四位置方法寻北方式及卡尔曼滤波的跟踪算法,有效地、快速地实现系统的测量。通过对原型样机的实验测试,结果表明,基于MEMS陀螺的钻机开孔定向仪其寻北时间、寻北精度以及动态测量精度,均满足了钻机开孔定向的指标要求及用户的实际需求。   相似文献   

20.
In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号