首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文是1986年古雷—石城剖面及嵩口—宜城剖面深地震测深资料的初步研究结果。 对古雷—石城的纵剖面资料,分析了震相特征,共识别出五个波组:P_2、P_3~0、P_4~0、P_5~0及P_n(P_n~0)。通过对波的走时反演,正演拟合和理论地震图方法等计算,得到了该区地壳与上地幔结构模型。 古雷—石城地区地壳具有多层结构,并可划分为上、中、下三层。古雷炮点给出的厚度分别为1.0km、15.7km、12.8km,地壳平均速度为6.29km/s,深度为29.5km,上地幔顶面P_n波速度为7.83km/s。石城炮点给出厚度分别为1.8km、18.3km、12.4km。地壳平均速度为6.29km/3,深度为32.4km,土地幔顶面P_n速度为8.00km/s。 在中地壳下部存在一低速层,其厚度为2.8km,速度为5.85km/s。根据其它研究结果,初步判断低速层介质是半熔融物质组成。 测区内横向变化比较强烈。从东向西有长乐—诏安、政和—海丰和邵武—河源三个大断裂穿过该区,并且都深切至莫霍面;在漳州盆地之下莫霍面隆起约3km,戴云山区下莫霍面凹陷近2km;永安—梅州莫霍面隆起接近3km。莫霍面分布显示出从东南向西北逐渐加深。 宜城—连城—嵩口非纵剖面显示了莫霍面在两处有明显断错,错距约2km邵。表明昭武—河源断裂是切割莫霍面的深大断裂。  相似文献   

2.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

3.
随县─启东人工地震探测剖面长700km,穿越郯城─庐江深大断裂带.提取了该区莫霍界面以下上地幔中的反射界面信息,获得了上地幔的分层结构.结果表明,该区上地幔中有两个深度分别为76km和100km的界面.76km深度以下为一低速层,100km深度以下则为速度更低的低速层.该区岩石层厚度为76km,与华北地区相似,具有薄岩石层性质.  相似文献   

4.
中国东部随县─启东地带上地幔结构研究   总被引:4,自引:0,他引:4       下载免费PDF全文
随县─启东人工地震探测剖面长700km,穿越郯城─庐江深大断裂带.提取了该区莫霍界面以下上地幔中的反射界面信息,获得了上地幔的分层结构.结果表明,该区上地幔中有两个深度分别为76km和100km的界面.76km深度以下为一低速层,100km深度以下则为速度更低的低速层.该区岩石层厚度为76km,与华北地区相似,具有薄岩石层性质.  相似文献   

5.
tudyoncrustmantletectonicsanditsvelocitystructurealongtheBeijingHuailaiFengzhenprofileZHIPINGZHU(祝治平)XIANKANGZHANG(张先康)...  相似文献   

6.
利用国家测震台网固定台站和"中国地震科学台阵探测"项目在南北地震带北段布设的宽频带流动台阵记录到的极远震事件,通过SS前驱波震相研究,获得了阿留申—阿拉斯加俯冲带东段及邻区下方410 km和660 km间断面的埋深和起伏形态特征.为增强对SS前驱波震相的识别,我们采用了时差校正和共反射点叠加分析.叠加结果显示,毗邻阿留...  相似文献   

7.
华北平原中部地区深部构造背景及邢台地震(二)   总被引:8,自引:2,他引:8       下载免费PDF全文
1966年3月22日邢台7.2级地震极震区的人工爆炸地震波场十分复杂。其运动学和动力学特征表明,沿人工爆炸测线地区的深处存在着许多深断裂,且将全测线切割成为五个块段,断裂面常延伸到莫霍界面和上地幔顶部的坚硬介质。极震区则为更特殊的块段结构。 极震区人工爆炸地震波的视速度V~*、视周期T~*、界面速度V_d、介质对能量的吸收系数α~*均有异常的变化,是一个断裂错综分布,宽约10-20公里的破碎地带。 7.2级地震震中区下面存在着两组深大断裂,且在此汇集。在震源深度附近的介质中,局部水平错动可达4公里左右,上地幔顶部在此隆起。  相似文献   

8.
云南思茅—中甸地震剖面的地壳结构   总被引:7,自引:7,他引:7       下载免费PDF全文
张智  赵兵  张晰  刘财 《地球物理学报》2006,49(5):1377-1384
云南思茅—中甸宽角反射/折射地震剖面切割松潘—甘孜、扬子和华南三个构造单元的部分区域. 我们利用初至波和壳内反射波走时层析成像获得地壳纵波速度结构. 在获得新的地壳速度结构模型基础上,利用地震散射成像思想和低叠加次数的叠前深度偏移方法重建了研究区的地壳、上地幔反射结构. 综合分析研究区地壳P波速度模型和壳内地震反射剖面发现:沿测线从北至南地壳厚度从约50 km减薄至35 km左右,地壳厚度的减薄量主要体现在下地壳,剖面北段下地壳厚度约为30 km,剖面南段下地壳厚度仅为15 km左右;上地幔顶部局部位置P波速度值偏低,一般为76~78 km/s,反映出云南地区是典型的构造活动区的特点.剖面沿线地壳内地震反射发育,其中莫霍强反射出现在景云桥下方;在景云桥弧形断裂带8~10 km深处出现宽约50 km的强反射带.  相似文献   

9.
基于P波三重震相的华南地区上地幔速度结构研究   总被引:2,自引:1,他引:1       下载免费PDF全文
华南块体是研究太平洋板块俯冲和岩石圈减薄机制等问题的最佳场所之一.本文基于中国地震观测台网和大型流动台阵记录到的震中距10°~30°之间的两个中深源地震P波记录,利用三重震相波形拟合技术,获得了中扬子克拉通和华夏地块上地幔高精度P波速度结构.研究结果表明:(1)中扬子克拉通过渡带底部存在高速异常,系太平洋俯冲板块的滞留体.俯冲的板块并没有进入下地幔,660-km间断面下沉约11 km,与后尖晶石相变的克拉伯龙斜率为负有关.而华夏地块过渡带底部并无明显高速异常,接近全球平均模型;(2)整个华南块体,410-km间断面上方普遍存在低速层,主要与上地幔部分熔融有关,与IASP91相比P波速度减小了1.38%~2.29%;(3)在研究区域内,中扬子克拉通和华夏地块都存在岩石圈减薄(80 km),推测可能与太平洋板块俯冲和快速回撤导致的岩石圈拆沉有关.且华夏地块减薄程度较明显,下伏软流圈速度较低,说明其上地幔强度较弱、温度较高.另外,中扬子克拉通过渡带中存在一个较宽的速度梯度带,可能与520-km间断面有关,其具体成因有待进一步研究.  相似文献   

10.
Seismic studies of the subducting lithosphere and the upper mantle discontinuities in the northwest Pacific subduction zone beneath Japan and northeast China have suggested contrary subduction scenarios. There was little consensus on the issue whether the subducting slab penetrates the upper mantle discontinuities into the lower mantle or it is deflected atop of the 660-km discontinuity over several hundred kilometers. We calculate receiver functions from a recent seismic broadband station network located in northeast China and find topographic variations of the upper mantle discontinuities. A deeper-than-normal 660-km discontinuity is observed over an area of 400 km and it coincides with the stagnant slab imaged by seismic tomography. The 660-km discontinuity is locally depressed by more than 35 km and the transition zone is thickened by more than 20 km in the east of the region where it encounters the slab. These observations provide evidence of the slab accumulating in the mantle transition zone and locally penetrating into the lower mantle.  相似文献   

11.
Extensive seismic investigations of the crust and upper mantle have been carried out in the region of the Barents and Kara seas during the past decade. One of the profiles (2-AR) measured by FGU NPP “Sevmorgeo” with the CDP and deep seismic sounding methods was successfully used for comparatively analyzing different technologies of constructing seismic sections and for demonstrating a high information content of the method of mathematical modeling and the constructions of wave sections from supercritical reflected waves. It is shown that the crusts of the North Barents and South Kara basins are different. In the first case, the velocity section changes insignificantly, whereas, in the second case, velocities in the crust increase under the basin and the M boundary rises. The crust of the Novaya Zemlya orogen has a thickness of 48 km, and its average thickness on the profile is 35 km.  相似文献   

12.
青藏高原因其复杂的结构和演化历史,一直都是研究大陆碰撞、构造运动及其动力学的热点区域。本文采用三重震相波形拟合技术,基于中国地震观测台网和大型流动台阵记录到的某地震P波垂向记录,获得了包括拉萨、南羌塘和松潘甘孜地块在内的青藏高原上地幔P波速度结构。结果表明:①拉萨和南羌塘地块下方地幔过渡带存在高速异常,推测是俯冲的印度板片滞留体,过渡带底部的板片残余温度较低,使得660-km相变滞后约3~8km。而松潘甘孜地块下方过渡带同样存在高速异常,可能是欧亚岩石圈发生拆沉进入地幔过渡带所致。这说明印度板块俯冲作用的影响已经到达地幔过渡带,其俯冲前缘位于班公怒江缝合带附近。②从拉萨、南羌塘到松潘甘孜地块,200km之上的地幔岩石圈高速盖层速度由南向北逐渐减小,松潘甘孜地块则出现盖层缺失。推测受小规模地幔对流或者热不稳定性的影响,在南羌塘和松潘甘孜地块,增厚的欧亚岩石圈发生拆沉作用,岩石圈被减薄和弱化,造成羌塘地块上地幔低速和松潘甘孜地块上地幔高速盖层缺失。拆沉的冷的欧亚岩石圈可能部分停留在410-km上方,使得410-km抬升约10km,部分沉入地幔过渡带,表现为松潘甘孜地块地幔过渡带中存在高速异常。低温造成660-km下沉约8km,导致地幔过渡带增厚。   相似文献   

13.
There is broad agreement among various seismological studies that the upper mantle has two regions where high positive velocity gradients or transition zones exist. The presence of these zones implies that two major triplications should exist in the travel-time curve for distances less than 30°. Approximately 200 earthquakes from the New Guinea, New Britain, and Solomon Island regions recorded at the Warramunga Array were analyzed using adaptive processing methods in an attempt to identify the positions of the later arrival branches. From measurements made along the first 20 sec of the arrivals, a retrogade travel-time branch associated with the “650-km” discontinuity was clearly identified as extending from 21° to 26°, and some evidence was found near 16° for the lower portion of the triplication associated with the “400-km” discontinuity. A careful search revealed however that the upper portions of the replicated travel-time branches were missing. There were no observed values ofdt/dΔ in the 12–13 sec/deg range for Δ greater than 20°. In this study it was found that if anelastic effects (Q) were not taken into consideration or ifQ were kept constant, the models derived from observed travel-time data all predicted large amplitude arrivals where non existed. The difficulty with the first triplication was resolved by the introduction of a lowQ region at depths of 85–315 km. This region may be associated with “the low-velocity region” but it is not necessary to decrease the P velocity to explain the observations.The difficulty with the second triplication was resolved by the introduction of a layer at a depth of 575–657 km which has no velocity gradient and a value ofQ significantly less than that for the material just below the “650-km” discontinuity. This layer may well represent the return path for an upper mantle convection cell.  相似文献   

14.
中国境内天山地壳上地幔结构的地震层析成像   总被引:23,自引:5,他引:18  
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

15.
We investigate the seismic structure of the western Philippine Sea using two sets of seismological observations: ScS reverberations, which provide the layering framework for a regional upper mantle model, and observations of frequency-dependent phase delays for direct S waves, surface-reflected phases (sS, SS, sSS), and surface waves (R1, G1), which constrain the velocity and anisotropy structure within the layers. The combined data set, comprising 17 discontinuity amplitudes and layer travel times from the ScS-reverberation stack and more than 1000 frequency-dependent phase delays, was inverted for a path-averaged, radially anisotropic model. Mineralogical estimates of the bulk sound velocity and density are incorporated as complementary constraints. The final model, PHB3, is characterized by a 11.5-km thick crust, an anisotropic lid bounded by a sharp negative G discontinuity at 89 km, an anisotropic low-velocity layer extending to 166 km, a subjacent high-gradient region, and transition-zone discontinuities at depths of 408 km, 520 km and 664 km. The lid is slower than in a comparable model for the Tonga–Hawaii corridor (PA5), but also significantly thicker, requiring a compositional variation between the two regions. We explore the hypothesis that the thickness of the oceanic lid is controlled by the melting depth at the spreading centers during crust formation, and that the thicker crust and lid in the Philippine Sea results from deeper melting owing to a higher potential temperature and perhaps a higher water content in the upper mantle.  相似文献   

16.
Tetsuo  Irifune 《Island Arc》1993,2(2):55-71
Abstract Phase transformations in model mantle compositions and those in subducting slabs have been reviewed to a depth of 800 km on the basis of recent high-pressure experimental data. Seismic velocity and density profiles in these compositions have also been calculated using these and other mineral physics data. The nature of the seismic velocity and density profiles calculated for a pyrolite composition was found to generally agree with those determined by seismic observations (e.g. PREM). The locations of the seismic discontinuities at 400 and 670 km correspond almost exactly to the depths where the transformations of the olivine component to denser phases take place. Moreover, the steep gradients in the seismic velocity/density profiles observed between these depths are qualitatively consistent with those expected from the successive transformations in the complementary pyroxene-garnet component in the pyrolite composition. Further, the calculated seismic velocity and density values agree well with those observed in the upper mantle and mantle transition region within the uncertainties attached to these calculations and observations. Pyrolite or peridotite compositions are thus most likely to represent the composition of the mantle above 670 km depth, although some degrees of chemical heterogeneity may exist in the transition region. The observed sharp discontinuous increases of seismic velocities and density at this depth may be attributed either to the phase transformation to a perovskite-bearing assemblage in pyrolite or to chemical composition changes. Density profiles in subducted slabs have been calculated along adequate geotherms assuming that the slabs are composed of the former oceanic crust underlain by a thicker harzburgitic layer. It is shown that the former oceanic crust is substantially less dense than the surrounding pyrolite mantle at depths below 670 km, while it is denser than pyrolite in the upper mantle and the transition region. The subducted former oceanic crust may be trapped in this region, forming a geochemically enriched layer at the upper mantle-lower mantle boundary. Thick and cool slabs may penetrate into the lower mantle, but the chemically derived buoyancy may result in strong deformation and formation of megalith structures around the 670 km seismic discontinuity. These structures are consistent with those detected by recent seismic tomography studies for subduction zones.  相似文献   

17.
In this paper, regionalP-wave upper mantle structure is investigated using slant-stack velocity analysis of short-period earthquake data recorded at station MAJO (Matsushiro, Japan). Shallow earthquakes from 1980–1986 within 35° of MAJO are used to construct a common receiver gather. Processing of the wavefield data includes focal depth and static time corrections, as well as deterministic deconvolution, in order to equalize pulse shapes and align wavelets on the first arrivals. The processed wavefield data are slant stacked and interatively downward continued to obtain a regional upper mantle velocity model. The model includes a low velocity zone between 107 and 220 km. Beneath the LVZ, the velocity increases smoothly down to the discontinuity at 401 km. In the transition zone, the velocity model again increases linearly, although there is some suggestion of further complexity in the downward continued wavefield data. At the base of the transition zone, a second velocity discontinuity occurs at 660 km, with a linear velocity gradient below. In addition to slant-stack analysis, travel times and synthetic seismograms are computed and compared with the processed and unprocessed wavefield data.  相似文献   

18.
I present the results of statistical hypothesis testing of Grand’s (2002) global tomography model of three-dimensional shear velocity variations for the middle mantle underneath eastern and southern Africa. I apply an F test to evaluate the validity of a model where a tilted, slow-velocity anomaly in the deepest mantle under southern Africa, known as the African superplume, is continuous with a slow-velocity anomaly in the upper mantle under eastern Africa. This null hypothesis is tested against alternative hypotheses, in which various “obstruction volumes” in the middle mantle are constrained to zero perturbation from the one-dimensional reference velocity during the tomographic inversion. I find that there is an equal probability of accepting an alternative hypothesis with a thin “obstruction volume” at 850–1,000 km depth, whereas volumes at other depths are rejected. But the alternative hypothesis, where a connection is forced at 850–1,000 km depth, is rejected. I conclude that the African superplume rises to at least 1,150 km depth, and that the upper mantle slow-velocity anomaly continues from the surface to below the mantle transition zone. I interpret the “obstruction volume” as a weakening of the superplume in the middle mantle.  相似文献   

19.
A two dimensional velocity model of the upper mantle has been compiled from a long-range seismic profile crossing the West Siberian young plate and the old Siberian platform. It revealed considerable horizontal and vertical heterogeneity of the mantle. A sharp seismic boundary at a depth of 400 km outlines the high-velocity gradient transition zone, its base lying at a depth of 650 km. Several layers with different velocities, velocity gradients and wave attenuation are distinguished in the upper mantle. They likewise differ in their inner structure. For instance, the uppermost 50–70 km of the mantle are divided into blocks with velocities from 7.9–8.1 to 8.4–8.6 km s?1.Comparison of the travel-time curves for the Siberian long-range profile with those compiled from seismological data for Europe distinguished large-scale upper mantle inhomogeneities of the Eurasian continent and allowed for the correlation of tectonic features and geophysical fields. The velocity heterogeneity of the uppermost 50–100 km of the mantle correlates with the platform age and heat flow, i.e., the young plates of Western Europe and Western Siberia have slightly lower velocities and higher heat flows than the ancient East European and Siberian platforms. At greater depths (150–250 km) the upper mantle velocities increase from the ocean to the inner parts of the continent. The structure of the transition zone differs significantly beneath Western Europe and the other parts of Eurasia. The sharp boundary at a depth of 400 km, traced throughout the whole continent as the boundary reflecting intensive waves, transforms beneath Western Europe into a gradient zone. This transition zone feature correlates with positions of the North Atlantic-west Europe geoid and heat-flow anomalies.  相似文献   

20.
AbstractThe Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in therecord sections,the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quitestrong lateral variation along the profile.The crust is divided into 5 layers,where the first,second and third layerbelong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocitybasement in the area to the north of Ma’erkang.The crustal structure in the section can be divided into 4 parts:inthe south of Garze-Litang fault,between Garze-Litang fault and Xiashuihe fault,between Xianshuihe fault andLongriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号