首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  相似文献   

2.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

3.
Effect of variability in surface roughness on overland flow from different geometric surfaces is investigated using numerical solution of diffusion wave equation. Three geometric surfaces rectangular plane, converging and diverging plane at slopes 1 to 3% are used. Overland flow is generated by applying rainfall at constant intensity of 10 mm/h for period 30 min and 100 min. Three scenarios of spatial roughness conditions viz. roughness increasing in downstream direction, roughness decreasing in downstream direction and roughness distributed at random are considered. Effect of variability of roughness on overland flow in terms of depth, velocity of flow and discharge along the distance from upstream to downstream for different geometric surfaces are discussed in detail. Results from the study indicate that roughness distribution has significant effect on peak, time to peak and overall shape of the overland flow hydrograph. The peak occurs earlier for the scenario when roughness increases in downstream direction as compared to scenario when roughness is decreasing in downstream for all three geometric surfaces due to very low friction factor and more velocity at the top of the domain. The converging plane attains equilibrium state early as compared to rectangular and diverging plane. Different set of random values result in different time to peak and shape of hydrograph for rectangular and diverging plane. However, in case of converging plane, the shape of computed hydrographs remains almost similar for different sets of random roughness values indicating stronger influence of converging geometry than effect due to variation of roughness sequence on computed runoff hydrograph. Hierarchically, the influence of geometry on overland flow is stronger than the influence of slope and the influence of slope is stronger than the influence of roughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Lattice-Boltzmann (LB) computations of single phase, pore-to-pore conductance are compared to models in which such conductances are computed via standard pore body–channel–pore body series resistance (SR), with the conductance of each individual element (pore body, channel) based on geometric shape factor measurements. The LB computations, based upon actual channel geometry derived from X-ray computed tomographic imagery, reveal that the variation in conductance for channels having similar shape factor is much larger than is adequately captured by the geometric models. Fits to the dependence of median value of conductance versus shape factor from the LB-based computations show a power law dependence of higher power than that predicted by the geometric models. We introduce two network flow models based upon the LB conductance computations: one model is based upon LB computations for each pore-to-pore connection; the second is based upon a power law fit to the relationship between computed conductance and throat shape factor. Bulk absolute permeabilities for Fontainebleau sandstone images are computed using the SR-based network models and the two LB-based models. Both LB-based network models produce bulk absolute permeability values that fit published data more accurately than the SR-based models.  相似文献   

5.
This paper presents an approach to incorporate time‐dependent dune evolution in the determination of bed roughness coefficients applied in hydraulic models. Dune roughness is calculated by using the process‐based dune evolution model of Paarlberg et al. ( 2009 ) and the empirical dune roughness predictor of Van Rijn ( 1984 ). The approach is illustrated by applying it to a river of simple geometry in the 1‐D hydraulic model SOBEK for two different flood wave shapes. Calculated dune heights clearly show a dependency on rate of change in discharge with time: dunes grow to larger heights for a flood wave with a smaller rate of change. Bed roughness coefficients computed using the new approach can be up to 10% higher than roughness coefficients based on calibration, with the largest differences at low flows. As a result of this larger bed roughness, computed water depths can be up to 15% larger at low flow. The new approach helps to reduce uncertainties in bed roughness coefficients of flow models, especially for river systems with strong variations in discharge with time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Realistic models of lithologic structure are critical for predicting flow and transport through heterogeneous volcanic aquifers. Existing models of lava flows based on physical processes are able to realistically simulate flow geometry and lithology, but the computational intensity limits applicability in generating entire aquifers. Fast surface-based models have been developed for hazard mapping, but these do not incorporate 3D geometry or lithology critical for hydrogeologic applications. Here we develop a hybrid modeling method (HMM) based on a combination of a process-based model (PBM) and a surface-based model. The methodologies are presented and compared to a known single flow and to each other in a full aquifer simulation. Results indicate that both the PBM and HMM simulations reasonably reproduce the flow geometry (length, branching, thickness) of the 1984 eruption of Mauna Loa in Hawai’i. Simulations of a volcanic aquifer built from 100 flows with the PBM and HMM are similar in spatial distribution and overall proportions of lithology (aa, transitional, pahoehoe, ash), flow geometry, and aquifer geometry. Thus, the hybrid method is an efficient method to generate geologically realistic models of volcanic aquifer structure. Model realism and parameterization can be improved as more field data become available.  相似文献   

7.
新疆伽师地区地应力的GPS损伤模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
张永志  朱桂芝  王琪 《地震工程学报》2000,22(4):386-389,418
采用几何损伤理论和方法推导了地壳存在不同方向和大小的断层时的有效应力的公式,讨论了利用几何损伤来分析和计算地壳中存在不连续断层的理论和方法,同时对中国新疆地区的地应力变化用几何损伤理论和方法结合该地区的GPS资料进行了数值计算研究,通过比较计算结果与1997年1月至1998年12月发生在该地区的Ms≥5.0地震活动可以看出,新疆南部的中强地震活动区主要在应力场变化激烈的地区。  相似文献   

8.
A model is developed that unifies vigorous hotspots with global-scale mantle convection and plate tectonics. The convection dynamics are assumed to generate flow patterns that emerge as closely packed polygonal cells in approaching the asthenosphere, and whose geometry is completely determined by a defining set of vigorous hotspots. Overlying viscously coupled rigid plates are driven with unique velocities (Euler vectors) at which the area integral of the shear forces is zero; these velocities are dynamically stable. The computed plate velocities, resulting from convection based on 15 hotspots, are compared with the velocities of plate motion models AM1-2 (Minster andJordan, 1978) and HS-NUVEL1 (Gripp andGordon, 1990), which combine transform fault geometries, magnetic anomalies and seismic data. The comparison shows a striking agreement for a majority of the plates. Geophysical implications of this numerical exercise are discussed.  相似文献   

9.
采用几何损伤理论和方法推导了地壳存在不同方向和大小的断层时的有效应力的公式 ,讨论了利用几何损伤理论来分析和计算地壳中存在不连续断层的理论和方法 ,同时对中国新疆伽师地区的地应力变化用几何损伤理论和方法结合该地区的GPS资料进行了数值计算研究 ,通过比较计算结果与 1 997年 1月至 1 998年 1 2月发生在该地区的MS ≥ 5 .0地震活动可以看出 ,新疆南部的中强地震活动区主要在应力场变化激烈的地区 .  相似文献   

10.
Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer–Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval Δx and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.  相似文献   

11.
12.
以河道的观测深度为硬数据,利用贝叶斯理论通过随机建模的方法生成描述河道的方向线和河道几何参数。选这些参数的最大概率作为河道的最优化模型,利用所生成的最优化参数计算出河道砂体的边界面。对大家所公认的横截面为抛物线形状的河道给出了计算的方法,并以此为例实现了这一计算方法。  相似文献   

13.
Point measurements of flow rate, depth or velocity are not sufficient to validate overland flow models, particularly when the interaction of the water with the soil surface creates a complex flow geometry. In this study, we present the coupling of two techniques obtaining spatial data of flow depths and surface velocity measurements for water depths as low as 1 mm. Overland flow experiments were performed in the laboratory at various flow rates and slopes on two surfaces. The first surface was 120 cm by 120 cm showing three undulations of sinusoidal shape with an amplitude of 1 cm and a wavelength of 20 cm, while the second was a 60 cm by 60 cm moulded reproduction of a seedbed with aggregates up to 2 cm in size. Large scale particle image velocimetry (LSPIV) was used for velocity measurements with a sub‐centimetre spatial resolution. An instantaneous‐profile laser scanner was used to map flow depths with a sub‐millimetre spatial resolution. A sensitivity analysis of the image processing of the LSPIV showed good robustness of the method. Comparison with measurements performed with hot film anemometer and salt velocity gauge showed that LSPIV surface velocities were representative of the flow. Water depths measured with the laser scanner were also in good agreement with single‐point measurements performed with a dial indicator. Spatially‐distributed flow rates could be computed by combining both presented techniques with a mean relative error less than 20%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
计算机断层成像(CT)需要对物体进行360°扫描,由于几何限制及X射线在纵向的高吸收率,使得其在大构件尤其是板状构件的检测方面具有局限性,在这些情况下,计算机分层成像(CL)提供了一种有效的方法。本文首先总结近年来国内外关于CL的研究成果,然后系统地阐述CL成像的原理、重建算法以及应用,最后在成像质量方面比较CL和CT。  相似文献   

15.
Summary The significant correlation coefficient between the terrestial heat flow and thermal conductivity computed from the continental heat flow data byHorai andNur [1]2) may be explained as a natural consequence of terrestrial heat flow through a random medium. The theory predicts a value of 0.40 for the correlation coefficient. A simple statistical test shows that the majority of the computed coefficients belong to the statistical population whose mean is equal to the theoretical correlation coefficient. There are, however, a few observations of unsually high correlation coefficient which cannot be explained by the above hypothesis.  相似文献   

16.
Various analytical expressions describing the hydraulic behavior of a continuous permeable reactive barrier (PRB) are developed based upon a two-dimensional approximation of the local groundwater flow system. The fully penetrating PRB is represented as an arbitrarily oriented elliptical “analytic element” with a hydraulic conductivity different from that of the aquifer. The validity of this elliptical geometry approximation as a surrogate for rectangular PRB performance is evaluated and put into context. Closed-form expressions for solute travel time distributions along the extent of the barrier and PRB capture zone geometry are evaluated for general barrier dimension (length and width), hydraulic conductivity, and orientation with respect to regional flow. These expressions are used as the foundation of a simple PRB design process, and provide some interesting insights into the hydraulic behavior of continuous permeable reactive barriers.  相似文献   

17.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Since the 1960s, most of the studies on groundwater flow systems by analytical and numerical modelling have been based on given‐head upper boundaries. The disadvantage of the given‐head approach is that the recharge into and discharge from a basin vary with changes in hydraulic conductivity and/or basin geometry. Consequently, flow patterns simulated with given‐head boundaries but with different hydraulic conductivities and/or basin geometry may not reflect the effects of these variables. We conducted, therefore, numerical simulations of groundwater flow in theoretical drainage basins using flux as the upper boundary and realistically positioned fluid‐potential sinks while changing the infiltration intensity, hydraulic conductivities, and geometric configuration of the basin. The simulated results demonstrate that these variables are dominant factors controlling the flow pattern in a laterally closed drainage basin. The ratio of infiltration intensity to hydraulic conductivity (Ric) has been shown to be an integrated pattern‐parameter in a basin with a given geometric configuration and possible fluid‐potential‐sink distribution. Successively, the changes in flow patterns induced by stepwise reductions in Ric are identical, regardless of whether the reductions are due to a decrease in infiltration intensity or an increase in hydraulic conductivity. The calculated examples show five sequential flow patterns containing (i) only local, (ii) local–intermediate, (iii) local–intermediate–regional, (iv) local–regional, and (v) just regional flow systems. The Ric was found to determine also whether a particular sink is active or not as a site of discharge. Flux upper boundary is preferable for numerical simulation when discussing the flow patterns affected by a change of infiltration, the hydraulic conductivity, or the geometry of a basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A one-dimensional flowline model has been constructed, tested and applied to two formerly glaciated valley basins within the Chilean Lake District. The vertically integrated ice flow model is similar to those used to study historical fluctuations of European Alpine glaciers and includes terms for internal deformation and basal sliding. In addition, longitudinal deviatoric stresses are computed and velocity terms are correspondingly adjusted. The model is driven through a mass balance term forced by a stepped lowering of the equilibrium line altitude (ELA) through time. Experiments, based on generating equilibrium glacier surface profiles corresponding to various ELAs, indicate that a lowering of at least 1000 m of the ELA from its present-day position is required to simulate the glacial maximum. Furthermore, the specific geometry of the two valleys provides an important control on the extent of the two glaciers, effectively decoupling them from further climatic deterioration once they have advanced beyond the constraining influence of their valleys into the piedmont zone. The tight nesting of terminal moraine loops provides evidence for this topographical control on palaeoglacier extent. The modelled response and sensitivity of the two palaeoglaciers to climate change differ markedly as a result of contrasting valley geometry. Glaciers resting on steeper gradients tend to have thinner profiles, faster mass turnover times and correspondingly shorter volume time-scales. Puyehue glacier has a response time of c. 1000 years whereas the Rupanco glacier has a response time of c. 2000 years. Hence, Puyehue is more sensitive to climatic fluctuations occurring on a time-scale of 500–1000 years. Furthermore, the Rupanco glacier may lag or even fail to respond at all to climatic fluctuations at these time-scales, a conclusion substantiated by field evidence. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
Although recognized as important, measures of connectivity (i.e. the existence of high-conductivity paths that increase flow and allow for early solute arrival) have not yet been incorporated into methods for upscaling hydraulic conductivities of porous media. We present and evaluate a binary upscaling formula that utilizes connectivity information. The upscaled hydraulic conductivity (K) of binary media is determined as a function of the proportions and conductivities of the two materials, the geometry of the inclusions, and the mean distance between them. The use of a phase interchange theorem renders the formula equally applicable to two-dimensional media with inclusions of low K and high K as compared with the matrix. The new upscaling formula is tested on two-dimensional binary random fields spanning a broad range of spatial correlation structures and conductivity contrasts. The computed effective conductivities are compared to what is obtained using self-consistent effective medium theory, the coated ellipsoids approximation, and to a streamline approach. It is shown that, although simple, the proposed formula performs better than available methods for binary upscaling. The use of connectivity information leads to significantly improved behavior close to the percolation threshold. The proposed upscaling formula depends exclusively on parameters that are obtainable from field investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号