首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

2.
Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov–Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov–Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s?1 kpc?1, B = ?11.90 ± 0.05 km s?1 kpc?1, C = ?2.99 ± 0.06 km s?1 kpc?1, K = ?4.04 ± 0.16 km s?1 kpc?1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s?1 kpc?1, B = ?12.71 ± 0.06 km s?1 kpc?1, C = ?2.04 ± 0.08 km s?1 kpc?1, K = ?2.72 ± 0.19 km s?1 kpc?1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is ?4.32 ± 0.08 km s?1 kpc?1 for main-sequence stars and ?0.61 ± 0.11 km s?1 kpc?1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.  相似文献   

3.
The intensity distribution of the OH Meinel bands in the airglow has been derived from the minor constituent profiles of Moreels et al. (1977). It has been shown that there is good agreement between the observed and calculated intensity distribution for excitation through the hydrogen-ozone reaction and quenching of the excited state by reaction with atomic oxygen and through vibrational relaxation. The rate constants for vibrational relaxation have been derived and are found to be vibrational level dependent; for the ν = 7 level, the peak value, the rate constant is 5.8 × 10?12cm3s?1.  相似文献   

4.
The space velocities of 200 long-period (P>5 days) classical Cepheids with known proper motions and line-of-sight velocities whose distances were estimated from the period-luminosity relation have been analyzed. The linear Ogorodnikov-Milne model has been applied, with the Galactic rotation having been excluded from the observed velocities in advance. Two significant gradients have been found in the Cepheid velocities, ?W/?Y = ?2.1 ± 0.7 km s?1 kpc?1 and ?V/?Z = 27 ± 10 km s?1 kpc?1. In such a case, the angular velocity of solid-body rotation around the Galactic X axis directed to the Galactic center is ?15 ± 5 km s?1 kpc?1.  相似文献   

5.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

6.
We consider stars with radial velocities, proper motions, and distance estimates from the RAVE4 catalogue. Based on a sample of more than 145 000 stars at distances r < 0.5 kpc, we have found the following kinematic parameters: \({\left( {U,{\kern 1pt} V,{\kern 1pt} W} \right)_ \odot }\) = (9.12, 20.80, 7.66) ± (0.10, 0.10, 0.08) km s?1, Ω0 = 28.71 ± 0.63 km s?1 kpc?1, and Ω0 = ?4.28 ± 0.11 km s?1 kpc?2. This gives the linear rotation velocity V 0 = 230 ± 12 km s?1 (for the adopted R 0 = 8.0 ± 0.4 kpc) and the Oort constants A = 17.12 ± 0.45 km s?1 kpc?1 and B = ?11.60 ± 0.77 km s?1 kpc?1. The 2D velocity distributions in the UV, UW, and VW planes have been constructed using a local sample, r < 0.25 kpc, consisting of ~47 000 stars. A difference of the UV velocity distribution from the previously known ones constructed from a smaller amount of data has been revealed. It lies in the fact that our distribution has an extremely enhanced branch near the Wolf 630 peak. A previously unknown peak at (U, V) = (?96, ?10) km s?1 and a separate new feature in the Wolf 630 stream, with the coordinates of its center being (U, V) = (30, ?40) km s?1, have been detected.  相似文献   

7.
Based on published data, we have collected information about Galactic maser sources with measured distances. In particular, 44 Galactic maser sources located in star-forming regions have trigonometric parallaxes, proper motions, and radial velocities. In addition, ten more radio sources with incomplete information are known, but their parallaxes have been measured with a high accuracy. For all 54 sources, we have calculated the corrections for the well-known Lutz-Kelker bias. Based on a sample of 44 sources, we have refined the parameters of the Galactic rotation curve. Thus, at R 0 = 8kpc, the peculiar velocity components for the Sun are (U , V , W ) = (7.5, 17.6, 8.4) ± (1.2, 1.2, 1.2) km s?1 and the angular velocity components are ω 0 = ?28.7 ± 0.5 km s?1 kpc?1, ω 0′ = +4.17 ± 0.10 km s?1 kpc?2, and ω0″ = ?0.87 ± 0.06 km s?1 kpc?3. The corresponding Oort constants are A = 16.7 ± 0.6 km s?1 kpc?1 and B = ?12.0 ± 1.0 km s?1 kpc?1; the circular rotation velocity of the solar neighborhood around the Galactic center is V 0 = 230 ± 16 km s?1. We have found that the corrections for the Lutz-Kelker bias affect the determination of the angular velocity ω 0 most strongly; their effect on the remaining parameters is statistically insignificant. Within themodel of a two-armed spiral pattern, we have determined the pattern pitch angle $i = - 6_.^ \circ 5$ and the phase of the Sun in the spiral wave χ 0 = 150°.  相似文献   

8.
9.
Nitric oxide is formed in the atmosphere through the ionization and dissociation of molecular nitrogen by galactic cosmic rays. One NO molecule is formed for each ion pair produced by cosmic ray ionization.The height-integrated input (day and night) to the lower stratosphere is of the order of 6 × 107 NO molecules cm?2/sec in the auroral zone (geomagnetic latitude Φ ? 60°) during the minimum of the sunspot cycle and 4 × 107 NO molecules cm?2/sec in the subauroral belt and auroral region (Φ? 45°) at the maximum of solar activity. The tropical production is less than 10?7 NO molecules cm?2/sec above 17 km and at the equator the production is only 3 × 106NO molecules cm?2/sec.  相似文献   

10.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

11.
A simple vibrational relaxation model which reproduces the observed altitude integrated vibrational distribution of the Herzberg I bands in the nightglow is used to derive the altitude profiles of the individual vibrational levels at 1 km intervals in the 85–115 km height range. The possible errors associated with using rocket-borne photometer measurements of a limited number of bands in the O2(A3Σu+?X3Σg?) system to infer the total Herzberg I emission profile are assessed.  相似文献   

12.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

13.
By directly comparing the photometric distances of Blaha and Humphreys (1989) (BH) to OB associations and field stars with the corresponding Hipparcos trigonometric parallaxes, we show that the BH distance scale is overestimated, on average, by 10–20%. This result is independently corroborated by applying the rigorous statistical-parallax method and its simplified analog (finding a kinematically adjusted rotation-curve solution from radial velocities and proper motions) to a sample of OB associations. These two methods lead us to conclude that the BH distance scale for OB associations should be shrunk, on average, by 11±6 and 24±10%, respectively. Kinematical parameters have been determined for the system of OB associations: u 0 = 8.2 ± 1.3 km s?1, v 0 = 11.9 ± 1.1 km s?1, w 0 = 9.5 ± 0.9 km s?1, σ u = 8.2 ± 1.1 km s?1, σ v = 5.8 ± 0.8 km s?1, σ w = 5.0 ± 0.8 km s?1, Ω0 = 29.1 ± 1.0 km s?1 kpc?1, Ω0′ = ?4.57 ± 0.20 km s?1 kpc?2, and Ω0″ = 1.32 ± 0.14 km s?1 kpc?3. The distance scale for OB associations reduced by 20% matches the short Cepheid distance scale (Berdnikov and Efremov 1985; Sitnik and Mel’nik 1996). Our results are a further argument for the short distance scale in the Universe.  相似文献   

14.
The radial velocities of the star Θ1 Ori C were measured from IUE spectra and are compared with published data. Two companions (C1 and C2) are assumed to be present. The probable periods for companion C1 can be estimated from the formula P=729.6/L days, where L<13 is an integer. Radialvelocity curves were constructed for L=11 and 12. The orbit turned out to be elliptical. At L=11, the orbital elements are P=66.3(1) days, γ=10.9(2) km s?1, K=6.1(4) km s?1, ω=?2.88(5) rad, e=0.43(6), and Ep=JD 2449044.7(4). The errors in the last decimal digit are given in parentheses. Companion C2 was as detected by temporal variations in the γ velocity of companion C1. Its orbit is assumed to be circular with the following elements: P=120(6) yr, γ=22(1) km s?1, K=13(2) km s?1, and Ep=1911(3) yr.  相似文献   

15.
We have determined the Galactic rotation parameters and the solar Galactocentric distance R 0 by simultaneously solving Bottlinger’s kinematic equations using data on masers with known line-of-sight velocities and highly accurate trigonometric parallaxes and proper motions measured by VLBI. Our sample includes 73 masers spanning the range of Galactocentric distances from 3 to 14 kpc. The solutions found are Ω0 = 28.86 ± 0.45 km s?1 kpc?1, Ω′0 = ?3.96 ± 0.09 km s?1 kpc?2, Ω″0 = 0.790 ± 0.027 km s?1 kpc?3, and R 0 = 8.3 ± 0.2 kpc. In this case, the linear rotation velocity at the solar distance R 0 is V = 241 ± 7 km s?1. Note that we have obtained the R 0 estimate, which is of greatest interest, from masers for the first time; it is in good agreement with the most recent estimates and even surpasses them in accuracy.  相似文献   

16.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

17.
Results of the scattered solar radiation spectrum measurements made deep in the Venus atmosphere by the Venera 11 and 12 descent probes are presented. The instrument had two channels: spectrometric (to measure downward radiation in the range 0.45 < γ < 1.17 μm) and photometric (four filters and circular angle scanning in an almost vertical plane). Spectra and angular scans were made in the height range from 63 km above the planet surface. The integral flux of solar radiation is 90 ± 12 W m?2 measured on the surface at the subsolar point. The mean value of surface absorbed radiation flux per planetary unit area is 17.5 ± 2.3 W m?2. For Venera 11 and 12 landing sites the atmospheric absorbed radiation flux is ~15 W m?2 for H >; 43 km and ~45 W m?2 for H < 48 km in the range 0.45 to 1.55 μm. At the landing sites of the two probes the investigated portion of the cloud layer has almost the same structure: it consists of three parts with boundaries between them at about 51 and 57 km. The base of clouds is near 48 km above the surface. The optical depth of the cloud layer (below 63 km) in the range 0.5 to 1 μm does not depend on the wavelength and is ~29 and ~38 for the Venera 11 and 12 landing sites, respectively. The single-scattering albedo, ω0, in the clouds is very close to 1 outside the absorption bands. Below 58 km the parameter (1 ? ω0) is <10?3 for 0.49 and 0.7 μm. The parameter (1 ? ω0) obviously increases above 60 km. Below 48 km some aerosol is present. The optical depth here is a strong function of wavelength. It varies from 1.5 to 3 at λ = 0.49 μm and from 0.13 to 0.4 at 1.0 μm. The mean size of particles below the cloud deck is about 0.1 μm. Below 35 km true absorption was found at λ < 0.55 μm with the (1 ? ω0) maximum at H ≈ 15 km. The wavelength and height dependence of the absorption coefficient are compatible with the assumption that sulfur with a mixing ratio ~2 × 10?8 normalized to S2 molecules is the absorber. The upper limits of the mixing ratio for Cl2, Br2, and NO2 are 4 × 10?8, 2 × 10?11, and 4 × 10?10, respectively. The CO2 and H2O bands are confidently identified in the observed spectra. The mean value of the H2O mixing ratio is 3 × 10?5 < FH2O < 10?4 in the undercloud atmosphere. The H2O mixing ratio evidently varies with height. The most probable profile is characterized by a gradual increase from FH2O = 2 × 10?5 near the surface to a 10 to 20 times higher value in the clouds.  相似文献   

18.
Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9 ± 0.2 km s?1 kpc?1 and B = ?12.0±0.2 km s?1 kpc?1. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500–1000 pc) RGC stars located near the Galactic plane (|z| < 200 pc) with an average distance of d = 0.7 kpc, the contraction velocity is shown to be Kd = ?3.5 ±0.9 km s?1; a noticeable vertex deviation, l xy = 9 · o 1 ± 0 · o 5, is also observed for them. For stars located well above the Galactic plane (|z| ≥200 pc), these effects are less pronounced, Kd = ?1.7 ± 0.5 km s?1 and l xy = 4 · o 9 ± 0 · o 6. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of ?2.5 ± 0.3 km s?1 kpc?1, which we associate with the warp of the Galactic stellar-gaseous disk.  相似文献   

19.
To study the peculiarities of the Galactic spiral density wave, we have analyzed the space velocities of Galactic Cepheids with propermotions from the Hipparcos catalog and line-of-sight velocities from various sources. First, based on the entire sample of 185 stars and taking R 0 = 8 kpc, we have found the components of the peculiar solar velocity (u , v ) = (7.6, 11.6) ± (0.8, 1.1) km s?1, the angular velocity of Galactic rotation Ω0 = 27.5 ± 0.5 km s?1 kpc?1 and its derivatives Ω′0 = ?4.12 ± 0.10 km s?1 kpc?2 and Ω″0 = 0.85 ± 0.07 km s?1 kpc?3, the amplitudes of the velocity perturbations in the spiral density wave f R = ?6.8 ± 0.7 and f θ = 3.3 ± 0.5 km s?1, the pitch angle of a two-armed spiral pattern (m = 2) i = ?4.6° ± 0.1° (which corresponds to a wavelength λ = 2.0 ± 0.1 kpc), and the phase of the Sun in the spiral density wave χ = ?193° ± 5°. The phase χ has been found to change noticeably with the mean age of the sample. Having analyzed these phase shifts, we have determined the mean value of the angular velocity difference Ω p ? Ω, which depends significantly on the calibrations used to estimate the individual ages of Cepheids. When estimating the ages of Cepheids based on Efremov’s calibration, we have found |Ω p ? Ω0| = 10 ± 1stat ± 3syst km s?1 kpc?1. The ratio of the radial component of the gravitational force produced by the spiral arms to the total gravitational force of the Galaxy has been estimated to be f r0 = 0.04 ± 0.01.  相似文献   

20.
The emission of light arising from the dissociative recombination with electrons of meteoric ions that have been oxidized by ozone is discussed and it is shown that this radiation has the characteristics necessary to explain the main features of luminosity observed below ~95 km in the trains of meteors in the approximate magnitude range 0 to ?5, namely: (i) that most enduring luminosity is obtained from heights between ~85 and ~95 km, (ii) that in this region the luminosity decays with time t according to (1 + Kt)?2 (rather than in an exponential fashion) with a rate constant K varying from ~0.3 s?1 near 90km to ~3s?1 below 85km and (iii) that the spectrum contains mainly lines characteristic of neutral calcium, iron and magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号