首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

2.
The geomagnetic sudden commencements (SSC's) are analyzed by the use of rapid-run magnetograms from eight American zone stations (Koror, Guam, Honolulu, Tucson, Fredericksburg, Sitka, College and Pt. Barrow). The occurrence rate of the equatorial SC1 reaches the maximum value of 60–70% in the early afternoon. The type (SC1 or pure SC without a preliminary reverse impulse) of an SSC at the dayside equator coincides well with that in the afternoon side high latitudes. When a pure SC is observed at Koror in the early afternoon, the other seven stations also observe pure SC's, and their onset is almost simultaneous at all the stations. The dayside equatorial SC1 usually corresponds to SC1's in afternoon side high latitudes and pure SC's in middle latitudes (Honolulu and/or Tucson). In this case the onset of the pure SC's in middle latitudes is delayed by several tens of seconds from the SC1's which appear almost simultaneously in both the dayside equatorial and the afternoon side high latitude region. In rare cases where SC1's are observed at all the stations including Honolulu, their onset time is almost simultaneous. The results are interpreted as showing the polar origin of the equatorial preliminary reverse impulse and the existence of two types of the interaction between the magnetosphere and the shock or discontinuity in the solar wind during SSC. Some discussions are given for the global distribution of the onset time and the waveform of SSC, the equatorial enhancement of the preliminary reverse impulse and the main impulse, and a physical decomposition of the SSC disturbance field.  相似文献   

3.
HEOS-2 has observed energetic electrons (> 40 keV) in the high latitude magnetosphere appearing as one or more peaks outside and often well separated from the trapping boundary. Most of the observations are between 70° and 80° invariant latitudes both in the day and nightside. The peaks are located in the dayside adjacent to the polar cusp and coincide in the nightside with the edge of the plasma sheet. The electron peak intensity on the nightside shows a clear correlation with AE. The electron peak intensities on the dayside exceed those on the nightside and are generally higher in the pre-noon than in the afternoon sector. Observations on the dayside in the distant cusp region and in the adjacent magnetosheath show high and fluctuating intensities of energetic electronswith an energy spectrum much harder than in the outermost trapping region.

This observational evidence suggests different source regions for these energetic electrons: one in the distant geomagnetic tail and another one around the dayside cusp indentation.  相似文献   


4.
The dynamics of the boundary of the penetration of solar energetic particles (electrons and protons) to Earth’s magnetosphere during solar flares and related geomagnetic disturbances in November 2001 and October–November 2003 is analyzed using CORONAS-F data. The relationship between the penetration boundary, the geomagnetic activity indices, and the local magnetic time is investigated. The correlation coefficient between the invariant latitude of the penetration boundary and the K p and D st indices for electrons with energies ranging from 0.3 to 0.6 MeV in the dayside sector is demonstrated to be higher than that in the nightside sector. The correlation coefficient for protons with energies from 1 to 5 MeV is higher in the nightside sector as compared to the dayside sector. For protons with energies from 50 to 90 MeV, the correlation is high at all MLT.  相似文献   

5.
We report results from 6 days' continuous recording of pulsation activity on a chain of magnetometers aligned East-West at 56.5°N geomagnetic latitude. We find phase differences between stations are relatively small. Signal propagation sense and horizontal polarisation correlate as low frequency inhomogeneous plasma theory predicts. There is no evidence of the Kelvin-Helmholtz instability being the major source. The most highly coherent signals often occur near midnight. We suggest the nightside may be the source region for a significant amount of dayside pulsation activity.  相似文献   

6.
7.
A. Seiff  Donn B. Kirk 《Icarus》1982,49(1):49-70
Data on the thermal structure of the nightside middle atmosphere of Venus, from 84 to 137 km altitude, have been obtained from analysis of deceleration measurements from the third Pioneer Venus small probe, the night probe, which entered the atmosphere near the midnight meridian at 27°S latitude. Comparison of the midnight sounding with the morning sounding at 31°S latitude indicates that the temperature structure is essentially diurnally invariant up to 100 km, above which the nightside structure diverges sharply from the dayside toward lower temperatures. Very large diurnal pressure differences develop above 100 km with dayside pressure ten times that on the nightside at 126 km altitude. This has major implications for upper atmospheric dynamics. The data are compared with the measurements of G. M. Keating, J. Y. Nicholson, and L. R. Lake (1980, J. Geophys. Res., 85, 7941–7956) above 140 km with theoretical thermal structure models of Dickinson, and with data obtained by Russian Venera spacecraft below 100 km. Midnight temperatures are ~ 130°K, somewhat warmer than those reported by Keating et al.  相似文献   

8.
We developed a new numerical model of the Jovian magnetosphere-ionosphere coupling current system in order to investigate the effects of diurnal variation of ionospheric conductance. The conductance is determined by ion chemical processes that include the generation of hydrogen and hydrocarbon ions by solar EUV radiation and auroral electrons precipitation. The model solves the torque equations for magnetospheric plasma accelerated by the radial currents flowing along the magnetospheric equator. The conductance and magnetospheric plasma then change the field-aligned currents (FACs) and the intensity of the electric field projected onto the ionosphere. Because of the positive feedback of the ionospheric conductance on the FAC, the FAC is the maximum on the dayside and minimum just before sunrise. The power transferred from the planetary rotation is mainly consumed in the upper atmosphere on the dayside, while it is used for magnetospheric plasma acceleration in other local time (LT) sectors. Further, our simulations show that the magnetospheric plasma density and mass flux affect the temporal variation in the peak FAC density. The enhancement of the solar EUV flux by a factor of 2.4 increases the FAC density by 30%. The maximum density of the FAC is determined not only by the relationship between the precipitating electron flux and ionospheric conductance, but also by the system inertia, i.e., the inertia of the magnetospheric plasma. A theoretical analysis and numerical simulations reveal that the FAC density is in proportion to the planetary angular velocity on the dayside and to the square of the planetary angular velocity on the nightside. When the radial current at the outer boundary is fixed at values above 30 MA, as assumed in previous model studies, the peak FAC density determined at latitude 73°-74° is larger than the diurnal variable component. This result suggests large effects of this assumed radial current at the outer boundary on the system.  相似文献   

9.
A superposed-epoch method is used to investigate the occurrence of spread-F at Huancayo relative to days of high sunspot activity and also relative to days of high geomagnetic activity. A good correlation is found between days of high Ap index and high spread-F occurrence for a pre-sunrise interval of a few hours. When 3-hourly kp indices are used they show a peak value approximately 6 hr prior to an above-average occurrence of spread-F. It is suggested that this pre-sunrise spread-F is associated with ionospheric height rises which are produced by travelling disturbances, initiated in polar regions at times of high geomagnetic activity.  相似文献   

10.
A superposed-epoch method is used to investigate the occurrence of spread-F at Huancayo relative to days of high sunspot activity and also relative to days of high geomagnetic activity. A good correlation is found between days of high Ap, index and high spread-F occurrence for a pre-sunrise interval of a few hours. When 3-hourly Kp indices are used they show a peak value approximately 6 hr prior to an above-average occurrence of spread-F. It is suggested that this pre-sunrise spread-F is associated with ionospheric height rises which are produced by travelling disturbances, initiated in polar regions at times of high geomagnetic activity.  相似文献   

11.
A previous comparison of experimental measurements of thermospheric winds with simulations using a global self-consistent three-dimensional time-dependent model confirmed a necessity for a high latitude source of energy and momentum acting in addition to solar u.v. and e.u.v. heating. During quiet geomagnetic conditions, the convective electric field over the polar cap and auroral oval seemed able to provide adequate momentum input to explain the thermospheric wind distribution observed in these locations. However, it seems unable to provide adequate heating, by the Joule mechanism, to complete the energy budget of the thermosphere and, more importantly, unable to provide the high latitude input required to explain mean meridional winds at mid-latitudes. In this paper we examine the effects of low energy particle precipitation on thermospheric dynamics and energy budget. Modest fluxes over the polar cap and auroral oval, of the order of 0.4 erg cm −2/s, are consistent with satellite observations of the particles themselves and with photometer observations of the OI and OII airglow emissions. Such particle fluxes, originating in the dayside magnetosheath cusp region and in the nightside central plasma sheet, heat the thermosphere and modify mean meridional winds at mid-latitudes without enhancing the OI 557.7 line, or the ionization of the lower thermosphere (and thus enhancing the auroral electrojets), neither of which would be consistent with observations during quiet geomagnetic conditions.  相似文献   

12.
The relationship between sudden geomagnetic field changes in the nightside cusp region and impulsive electron precipitation events in the auroral zone is investigated. The investigations are based on magnetic field measurements from the spacecraft Explorer 35, Explorer 33 and OGO-5 and on X-ray measurements with balloon-borne instruments from Kiruna/Sweden. The sudden field changes are characterized by a decrease of the field strength and a rotation of the field direction. The precipitation events represent strong flux increases within a few minutes. The field changes were accompanied by impulsive precipitation not only in the midnight sector but also on the dayside. They can be regarded as a manifestation of the unsteady magnetospheric processes during the expansion phase. Whereas both phenomena occurred simultaneously on the nightside, the increase of precipitation was delayed by ca. 5 min on the dayside. It is assumed that the simultaneous occurrence on the nightside can be related to the formation of a neutral line with a considerable length in dawn-dusk-direction. Mechanisms are also discussed which could be responsible for the time delay on the dayside.  相似文献   

13.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   

14.
From riometer records for the sudden impulse event of 4 February 1969, it is shown that ionospheric absorption accompanying a sudden impulse has the same type of latitude and longitude variations found for sudden commencement events. In addition, an examination of magnetograms at College, Alaska shows that some positive sudden impulses may trigger negative bays around local midnight, similar to the recent results for sudden commencements.  相似文献   

15.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

16.
The dayside thermospheric wind pattern as observed from Spitsbergen generally shows moderately strong westward winds with a small poleward component. The flow is almost zonal, frequently with sufficient westward velocity that parcels of air cross the noon meridian travelling towards the morning before turning antisunward towards the nightside across the polar cap. There have been some exceptions which are characterized by much weaker winds having been increased in the poleward direction but with a very much reduced westward component. Making use of the meridian scanning photometer data obtained simultaneously on the same site, it is clearly shown that the normal behaviour occurs when the cusp, as indicated by the region of high 630428nm and 630558nm photometric intensity ratios, is to the North of the station. Just below the latitude of the cusp, the strong thermospheric flow generated by neutral coupling to the strong westward convection in the dusk sector continues across the dayside. It is maintained in the zonal direction because of the balance between the poleward Coriolis force and the equatorward pressure force caused by cusp heating. Poleward of the high pressure region at the cusp the flow is diverted northward and initially makes much slower progress across the Polar Cap. When the auroral oval has expanded such that the cusp is well to the South of our Spitsbergen station, the thermosphere in the sampled region has been found to be within this slow flow zone. On such occasions, the nightside speeds are well in excess of those on the dayside, in contrast to the normal behavior of comparable dayside and nightside wind speeds.  相似文献   

17.
An analysis is presented of photometric measurements of the NI (λ = 520nm),OI(λ = 630nm)and other emissions made at Nord, where the invariant latitude is Λ = 80°4. The time variations of the intensities are interpreted in the following way by comparison with simultaneous ground based or satellite measurements.The N(2D) atoms formed in the dayside cleft are carried by the neutral wind in a plume across the polar cap, so that the ratio of λ(630 nm) to λ(520 nm) intensities decreases along the plume with increasing distance from the source region.In the polar cap, but outside the plume region, 630 nm emission is produced by electron impact of polar rain and by substorms that reach high latitudes. Ionization produced at the same time, especially by the substorms, will produce further 630 nm emission through dissociative recombination. In any case, the region outside the plume may be regarded as a source region, with a high value of the ratio I(630)I(520). This explains in part the diurnal variations, since this ratio is depressed as Nord crosses the dayside plume.The electron energy along the oval increases progressively from the dayside to the nightside. The intensity ratio increases with increasing electron energy because N(2D) is quenched more rapidly than O(1D). Thus the ratio rises progressively from noon to midnight.An effect of the interplanetary magnetic field is superimposed on this pattern : as its North-South component Bz increases, the oval contracts so that Nord becomes nearer from the cleft source and the intensity ratio increases on the dayside. The inverse effect is also observed. On the nightside, negative Bz is associated with substorms that produce poleward expansions of the poleward oval boundary, that brings more energetic precipitation to Nord. This causes the intensity ratio to increase with decreasing Bz in a way that is opposite to that for the dayside.  相似文献   

18.
The motion of auroral forms on the day- and nightside of the Earth has been studied during different substorm phases by means of all-sky camera films. A substorm is characterized by a shift of the luminescence region towards the equator at noon and mainly towards the pole at midnight. However, individual forms drift predominantly toward the pole on the dayside and towards the equator on the nightside. The velocity of the poleward motion at noon is largest during the expansive phase of a substorm and amounts on the average to 330 msec but even during relatively quiet magnetic conditions a poleward motion is observed.  相似文献   

19.
The linear Bartels ap indices, which by definition should have no average U.T. variations, show in fact two different average U.T. variations if the data is divided into two groups according to the two Interplanetary Magnetic Field (IMF) polarities. These differences are found to be similar for all seasons and activity ranges. Correlating the ap variations of individual days to the average ap variations for days with interplanetary away and toward polarities, a simple but objective precept of calculations is given to infer the IMF sector structure with a success rate of 73% of the days for the years 1963–1973. The same method is employed to infer the IMF sector structure since 1932, and the results are compared to the sector structure inferred from polar cap magnetograms. Some known features of solar sector fields, e.g. the heliographic latitude dependence of the dominant polarity, are also found in the polarity classification based on ap variations, whereas the significant higher geomagnetic activity during intervals of toward polarity before 1963, which was found in the sector structure inferred from polar cap magnetograms, is not observed.  相似文献   

20.
A two-dimensional model of the ionosphere of Venus which simulates ionospheric dynamics by self-consistently solving the plasma equations of motion, including the inertial term, in finite difference form has been constructed. The model, which is applied over the solar zenith angle range extending from 60 to 140° and the altitude range 100 to 480 km, simulates the measured horizontal velocity field quite satisfactorily. The ion density field is somewhat overestimated on the dayside because of the choice model neutral atmosphere and underestimated on the nightside because of setting the ionopause height at too low an altitude. It is concluded that solar photoionization on the dayside and ion recombination on the nightside are the processes mainly responsible for accelerating the plasma to the observed velocities. The plasma flow appears to be sufficient to maintain the nightside ionosphere at or near the observed median level of ion densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号