首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Outcrops of buried soils on lake-plains and glacial headlands along Lake Michigan's eastern shore suggest that periodic dune-building has occurred there after relatively long (≥100 yr) periods of low sand supply. We located, described, and radiocarbon dated 75 such buried soils that crop out in 32 coastal dune fields beside the lake. We assume that peaks in probability distributions of calibrated 14C ages obtained from wood, charcoal, and other organic matter from buried A horizons approximate the time of soil burial by dunes. Plotted against a late Holocene lake-level curve for Lake Michigan, these peaks are closely associated with many 150-yr lake highstands previously inferred from beach ridge studies. Intervening periods of lower lake levels and relative sand starvation apparently permitted forestation and soil development at the sites we studied. While late Holocene lake-level change led to development and preservation of prominent foredunes along the southern and southwestern shores of Lake Michigan, the modern dune landscape of the eastern shore is dominated by perched dunes formed during 150-yr lake highstands over the past 1500 yr.  相似文献   

2.
《Quaternary Science Reviews》1999,18(4-5):573-591
In the endoreic, semi-arid Konya basin on the central Anatolian plateaux, long-term hydrological evolution has left various landforms and lacustrine deposits reflecting the regional climatic evolution, as well as human influence on the local environments. This paper presents results from a cooperative programme grouping several institutes from Turkey and France, on lacustrine, marshy and aeolian sediment sequences of Upper Pleistocene and Holocene age. The detailed study of environmental evolution is based on the reconstruction as well as on the characterization of the extension and contraction phases of wetlands occupying the lowest parts of the Konya plain. A soil and a marsh layer are 14C dated ca. 28,000–25,000 yr bp. Three phases of Pleniglacial (from ca. 22,000 to 17,000 yr bp) high lake levels are distinguished. Complementary OSL dates on aeolian dunes confirm the occurrence of two drought periods: the first occurs around the start of the Late Glacial, the second after the Mid-Holocene climatic optimum, the latter being ‘in phase’ with a similar drought in other Eastern Mediterranean regions. After 17,000 yr bp, no lacustrine phase reached as high a level as the Pleniglacial lake. During the Late Glacial, a shallow freshwater lacustrine phase is identified from >12,500 to 11,000 yr bp. The Late Glacial to Holocene transition corresponds to a general absence of deposits and dateable material, thus suggesting a period of drought, to which no aeolian features have so far been related. The Holocene environmental evolution shows a period of marsh and shallow lake extansion from 6000 to 5500 yr bp; this wetter period is interrupted by the second drought (ca. 5500 yrs bp) as indicated by aeolian dune activity. During the Late Holocene, a renewal of marshes, as well as soil development on slopes, can be interpreted either as climatic changes or as impacts of human use of water and soil resources during prehistoric and historic times.  相似文献   

3.
Most inland eolian dunes associated with rivers on the Georgia Coastal Plain probably date to glacial periods. Direct dating of the dune sand by optically stimulated luminescence dating, combined with limiting ages from radiocarbon dating, shows that dunes formed during isotope stage 2, stage 3, the transition between stages 4 and 5, and isotope stage 6 or earlier. Most of the dates indicate dune activity between 30,000 and 15,000 years ago. Holocene activity included limited and local reworking of the crests of some thick dunes along streams that flow from the Piedmont.  相似文献   

4.
In the central Great Plains of North America, loess stratigraphy suggests that climate during the late Pleistocene was cold and dry. However, this record is discontinuous, and there are few other records of late-Pleistocene conditions. Cobb Basin, located on the northern edge of the Nebraska Sand Hills, contains lacustrine sediments deposited during Marine Isotope Stage 3, beginning approximately 45,000 cal yr BP and continuing for at least 10,000 yr. The lake was formed by a dune dam blockage on the ancient Niobrara River, and its deposits contain a diatom record that indicates changes through time in lake depth driven by changes in effective moisture. During the earliest stages of lake formation, the climate was arid enough to mobilize dunes and emplace dune sand into a blocking position within the Niobrara streambed. Diatom assemblages suggest that lake-level was shallow at formation, increased substantially during a wet interval, and then became shallow again, as arid conditions resumed. By about 27,000 cal yr BP the lake was filled, and a shallow ephemeral river occupied the basin.  相似文献   

5.
The stabilized northwestern (NW) Negev vegetated linear dunes (VLD) of Israel extend over 1300 km2 and form the eastern end of the Northern Sinai – NW Negev Erg. This study aimed at identifying primary and subsequent dune incursions and episodes of dune elongation by investigating dune geomorphology, stratigraphy and optically stimulated luminescence (OSL) dating. Thirty-five dune and interdune exposed and drilled section were studied and sampled for sedimentological analyses and OSL dating, enabling spatial and temporal elucidation of the NW Negev dunefield evolution.In a global perspective the NW Negev dunefield is relatively young. Though sporadic sand deposition has occurred during the past 100 ka, dunes began to accumulate over large portions of the dunefield area only at ~23 ka. Three main chronostratigraphic units, corresponding to three (OSL) age clusters, were found throughout most of the dunefield, indicating three main dune mobilizations: late to post last glacial maximum (LGM) at 18–11.5 ka, late Holocene (2–0.8 ka), and modern (150–8 years). The post-LGM phase is the most extensive and it defined the current dunefield boundaries. It involved several episodes of dune incursions and damming of drainage systems. Dune advancement often occurred in rapid pulses and the orientation of VLD long axes indicates similar long-term wind directions. The late Holocene episode included partial incursion of new sand, reworking of Late Pleistocene dunes as well as limited redeposition. The modern sand movement only reactivated older dunes and did not lengthen VLDs.This aeolian record fits well with other regional aeolian sections. We suggest that sand supply and storage in Sinai was initiated by the Late Pleistocene exposure of the Nile Delta sands. Late Pleistocene winds, substantially stronger than those usually prevailing since the onset of the Holocene, are suggested to have transported the dune sands across Sinai and into the northwestern Negev.Our results demonstrate the sensitivity of vegetated linear dunes located along the (northern) fringe of the sub-tropical desert belt to climate change (i.e. wind) and sediment supply.  相似文献   

6.
Using ground‐penetrating radar, optically stimulated luminescence dating, particle‐size distribution and morphological analysis, the study of the construction phases of a vegetated linear dune in the arid north‐western Negev dunefield of Israel during the last millennium improves current knowledge about vegetated linear dunes that developed in the late Pleistocene. Vertical accretion in rapid pulses forming horizontally bedded units along the axis of vegetated linear dunes, regardless of their age, was found to be characteristic of vegetated linear dunes. The combination of the unique topographic feature of a longitudinal 5 m step‐like fall in dune crest elevation with the substantial narrowing of dune width constitutes a distinct morphological marker for interpreting local dune growth and stabilization of the last, albeit localized, dune mobilization episode at ca 0·5 ka. Evidence for lateral dune migration was not observed. Where local sediment supply exists, short episodes of powerful winds within the Holocene (with recurrence intervals separated by hundreds of years) can lead to the construction of vegetated linear dunes. The spatially constrained extent of such young dunes in the north‐western Negev may be due to limited sand availability because most of the Negev dunes were stable during the Holocene. These findings imply that vegetated linear dune construction can occur in glacial and interglacial (including Holocene) environments in semi‐arid to arid climates if certain conditions are met. In times of increased wind power during the Anthropocene, a period characterized by simultaneous rises in the human impact on the landscape and in climate variability (i.e. drought), local growth of vegetated linear dunes can be expected. This study demonstrates that ground‐penetrating radar is a reliable tool for interpreting the shallow internal structure of young vegetated linear dunes.  相似文献   

7.
This paper reexamines the stratigraphy, sources, and paleoclimatic significance of Holocene Bignell Loess in the central Great Plains. A broadly similar sequence of loess depositional units and paleosols was observed in thick Bignell Loess sections up to 300 km apart, suggesting that these sections record major regional changes in the balance between dust deposition and pedogenesis. New optical ages, together with previously reported radiocarbon ages, indicate Bignell Loess deposition began 9000–11,000 yr ago and continued into the late Holocene; some Bignell Loess is <1000 yr old. There is little evidence that Holocene Loess was derived from flood plain sources, as previously proposed. Instead, thick Bignell Loess occurs mainly near the downwind margins of inactive dune fields, particularly atop escarpments facing the dunes. Thus, the immediate loess source was dust produced when the dunes were active. Previous work indicates that widespread episodes of dune activity are likely to have resulted from drier-than-present climatic conditions. The regionally coherent stratigraphy of Bignell Loess can be interpreted as a near-continuous record of climatically driven variation in dune field activity throughout the Holocene.  相似文献   

8.
The early Holocene final drainage of glacial Lake Minong is documented by 21 OSL ages on quartz sand from parabolic dunes and littoral terraces and one radiocarbon age from a lake sediment core adjacent to mapped paleoshorelines in interior eastern Upper Michigan. We employ a simple model wherein lake-level decline exposes unvegetated littoral sediment to deflation, resulting in dune building. Dunes formed subsequent to lake-level decline prior to stabilization by vegetation and provide minimum ages for lake-level decline. Optical ages range from 10.3 to 7.7 ka; 15 ages on dunes adjacent to the lowest Lake Minong shoreline suggest final water-level decline ∼ 9.1 ka. The clustering of optical ages from vertically separated dunes on both sides of the Nadoway-Gros Cap Barrier around 8.8 ka and a basal radiocarbon date behind the barrier (8120 ± 40 14C yr BP [9.1 cal ka BP]) support the hypothesis that the barrier was breached and the final lake-level drop to the Houghton Low occurred coincident with (1) high meltwater flux into the Superior basin and (2) an abrupt, negative shift in oxygen isotope values in Lake Huron.  相似文献   

9.
Lacustrine sediments from southeastern Arabia reveal variations in lake level corresponding to changes in the strength and duration of Indian Ocean Monsoon (IOM) summer rainfall and winter cyclonic rainfall. The late glacial/Holocene transition of the region was characterised by the development of mega-linear dunes. These dunes became stabilised and vegetated during the early Holocene and interdunal lakes formed in response to the incursion of the IOM at approximately 8500 cal yr BP with the development of C3 dominated savanna grasslands. The IOM weakened ca. 6000 cal yr BP with the onset of regional aridity, aeolian sedimentation and dune reactivation and accretion. Despite this reduction in precipitation, the lake was maintained by winter dominated rainfall. There was a shift to drier adapted C4 grasslands across the dune field. Lake sediment geochemical analyses record precipitation minima at 8200, 5000 and 4200 cal yr BP that coincide with Bond events in the North Atlantic. A number of these events correspond with changes in cultural periods, suggesting that climate was a key mechanism affecting human occupation and exploitation of this region.  相似文献   

10.
We present a new stratigraphic (pollen and nonpollen microfossils and charcoal particle) sequence with five AMS dates, covering about the last 9000 yr, of a core collected from the Spanish northern meseta, one of the territories of the Iberian Peninsula for which little paleobotanical information is available. The results support the hypothesis of the permanence of the pine forests, in more or less pure masses or large timber stands, during the Holocene in some Iberian continental zones. The typical substitution in postglacial dynamics of heliophyllous species, such as pines or Cupressaceae, by broadleaf trees did not occur in this inland region. Presumably, factors linked to the substrate, in this case very deep sand dunes covering vast areas, may have contributed to the scarce local competitiveness of the broadleaf trees, which would account for the hegemony of pines in this region. Based on the dynamics of aquatic plants and nonpollen microfossils, an initial phase previous to 7500 14C yr B.P. of high levels in the lake can be identified by high percentages of hydrophytes. A progressive increase in helophytes and the gradual infilling of the lake over the last 5000 yr appear to indicate a phase of aridification similar to those established for the western Mediterranean. Study of charcoal particles, more abundant in the last 2500 yr, has given rise to certain hypotheses regarding the incidence of recurring fires of a local or regional nature.  相似文献   

11.
Remnants of a fixed aeolian dune ridge occur along the southeast coast of Ghana, just behind the present shoreline. Aeolian sands also cover extensive areas of the Accra Plains. No dunes are present here, the sands mainly occurring as sheets which blanket an early Holocene landscape. The sediments are of mid-Holocene age and were deposited during the interval 4500 B.P.–3800 yr B.P., when the southwesterly winds were stronger than they are at present and much of tropical Africa seems to have been subject to marked aridity. The onset of drier, windier conditions around 4500 yr B.P. brought to an end the more equable climates than had characterized much of West Africa during the earlier Holocene. Aridity, intensified winds, and desert expansion between 4500 and 3800 yr B.P. parallel environmental conditions in tropical continental areas at the height of the Late Pleistocene glaciation.  相似文献   

12.
Holocene evolution and human occupation of the Sixteen Mile Beach barrier dunes on the southwest coast of South Africa between Yzerfontein and Saldanha Bay are inferred from the radiocarbon ages of calcareous dune sand, limpet shell (Patella spp.) manuports and gull-dropped white mussel shells (Donax serra). A series of coast-parallel dunes have prograded seaward in response to an overall marine regression since the mid-Holocene with dated shell from relict foredunes indicating periods of shoreline progradation that correspond to drops in sea level at around 5900, 4500 and 2400 calibrated years before the present (cal yr B.P.). However, the active foredune, extensively covered by a layer of gull-dropped shell, has migrated 500 m inland by the recycling of eroded dune sand in response to an approximate 1 m sea level rise over the last 700 yr. Manuported limpet shells from relict blowouts on landward vegetated dunes indicate human occupation of coastal dune sites at 6200 and 6000 cal yr B.P. and help to fill the mid-Holocene gap in the regional archaeological record. Coastal midden shells associated with small hearth sites exposed in blowouts on the active foredune are contemporaneous (1600-500 cal yr B.P.) with large midden sites on the western margin of Langebaan Lagoon and suggest an increase in marine resource utilisation associated with the arrival of pastoralism in the Western Cape.  相似文献   

13.
Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973–1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.  相似文献   

14.
Geoarchaeological investigations at the Clovis type site, Blackwater Locality No. 1, in 1983 and 1984 included core drilling, archaeological test excavations, stratigraphic profiling, sedimentary analyses, and radiocarbon dating. Six lines of core holes transverse to the outlet channel clearly defined the subsurface configuration and stratigraphy of the prehistoric spring run. Pieces of large animal bone from units B, C, D, and E that elsewhere in the site contain Paleoindian artifacts suggest occurrences of additional buried sites along the ancient spring run. Four Paleoindian projectile points recovered during archaeological testing confirm these prospects. The Clovis type site, located in an abandoned gravel pit, is in a natural depression initially occupied by a late Pleistocene lake. After breaching of the depression by overflow or sapping, it became a springhead and was enlarged by slumping and slopewash. Detailed stratigraphic profiling of the south wall of the abandoned gravel pit provided precise stratigraphic control for sediment sampling and radiocarbon dating, and revealed more complex microstratigraphy and facies relationships than heretofore known for the site. The interfingering of dune facies around the depression with lacustrine and spring-laid facies within it aid paleoclimatic interpretation. Deflational contacts within the depression appear to correlate with adjacent wedges of dune sand reflecting relatively arid intervals. Between these arid episodes occur intervals of increased ground water level attended initially by deposition of spring-laid sands of unit B during the late Pleistocene (13,000–11,500 yr B.P.). As the water table rose following a period of severe deflation, slumping and gravity flow deposited clayey sand, Unit C, on the floor of the blowout between 11,500 and 11,000 yr B.P. During this time Clovis people first appeared at the site. After another brief period of deflation, a lake rose causing sand of Unit D0 to be washed in from shore followed by deposition of diatomities, units D1 and D2. These were separated by a brief influx of eolian sand, unit D2z. Between 10,800 and 10,000 yr B.P. outflow from the lake was reduced by accumulation of eolian sand in the outlet while Folsom people and later Agate Basin people arrived to hunt bison during this time. Cody complex people appeared during and after a brief erosional episode that preceded deposition of eolian silt and sand of units E and F from 10,000 to 8000 yr B.P. Eolian deposition during post-Folsom time converted the pond to a wet meadow and eventually, during Cody time, to a grassy swale. Some of these deposits were blown out during the Altithermal arid period (ca. 8000-5000 yr B.P.), a time when prehistoric Archaic peoples excavated wells in the floor of the depression. Subsequent eolian activity has resulted in deflation and dune migration during the late Holocene. The best prospects for Paleoindian finds are along the buried outlet south of the south wall and in early Holocene dune sands on the uplands around the depression. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
《Quaternary Science Reviews》2007,26(19-21):2598-2616
Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood. In this study, we collected 82 samples from 26 sites across the Strzelecki and Tirari Deserts in the driest part of central Australia to provide an optically stimulated luminescence chronology for these dunefields. The dunes preserve up to four stratigraphic horizons, bounded by palaeosols, which represent evidence for multiple periods of reactivation punctuated by episodes of increased environmental stability. Dune activity took place in episodes around 73–66, 35–32, 22–18 and 14–10 ka. Intermittent partial mobilisation persisted at other times throughout the last 75 ka and dune activity appears to have intensified during the late Holocene. Dune construction occurred when sediment was available for aeolian transport; in the Strzelecki and Tirari Deserts, this coincided with cold, arid conditions during Marine Isotope Stage (MIS) 4, late MIS 3 and MIS 2, and the warm, dry climates of the late Pleistocene–Holocene transition period and late Holocene. Localised influxes of sediment on active floodplains and lake floors during the relatively more humid periods of MIS 5 also resulted in dune formation. The timing of widespread dune reactivation coincided with glaciation in southeastern Australia, along with cooler temperatures in the adjacent oceans and Antarctica.  相似文献   

16.
Fairly constant winds from N to NNE (Fig. 2) prevail at present at the Western Sahara coast. Accordingly, a relatively narrow field of barchan dunes of only 80 km width reaches the coast SE of Cape Blanc (Fig. 1). Very uniform pebble plains form their ground of advance in the study area 60 km wide and 18 km long. Height H, volume V, and distance D from the southern border of the study area were determined for 963 dunes from aerial photographs (Figs. 5 and 6). Data on the dune advance rate were estimated for the particular region byCoursin (1964). Consequently it was possible to calculate a dune sand discharge amounting to 93 000 m3/yr/80 km crossing the southern border of the study area at the time the aerial photographs were taken. Based on the areal distribution pattern of the dunes this sand flow probably might increase threefold within the next 800 years (Fig. 7). Corresponding to the dune sand-discharge QT a saltation sand-discharge (Q and q), 50–100 times larger, of 5,0 and 7–13 Mio m3/yr/80 km, respectively, reaches the Atlantic from the Sahara. The estimates were derived from two independant calculations: the dune advance rate and the wind data. If one compares the wind transported load from the Sahara with that of the mouths of large rivers (e. g. Niger River: 40 Mio. m3/yr) it seems only of minor importance. Because of the relatively coarse grain sizes (Md≈220μm) the wind sand supply is deposited mainly along the strand line. Consequently, remarkably wide sebkha plains are built forward and the shelf becomes unusually narrow. Several independent criteria (e. g. Fig. 7) suggest a fairly young age, close to 500 years of the recent barchan field. A different wind direction, from the NE, and a lowered sea-level might have resulted during the ice-ages in as much as 5 times larger wind load (? 25 Mio m3/yr) arriving at the shelf edge and from there flowing down to the deep sea as turbidity currents. The present wind load has a content of iron oxides of roughly 1.2 per thousand. This value increased to 3.2 per thousand in Pleistocene dune sands.  相似文献   

17.
The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the “Great Drought”, a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.  相似文献   

18.
The late Pleistocene and Holocene sedimentary stratigraphy is described for part of the high plateau of Yemen (altitude 2000–3000 m A.S.L.), to the south of Sana'a. The presence of angular slope debris and dune sand in pre-Holocene contexts suggest cold and arid late Pleistocene conditions, followed, after a phase of indeterminate semiarid fluvial activity, by the development of humic palaeosol A horizons at a wide range of altitudes. Dated to between 7500 and 4350 B.P., this palaeosol includes a valley floor component related to marsh and lake development. Correlation with the humid Neolithic phase of southern Arabia is suggested for this palaeosol. Above the palaeosol thick sedimentary accumulations are associated with increased evidence of human activity and the construction of terraced fields after around 4300 B.P. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
Field investigations at Dugway Proving Ground in western Utah have produced new data on the chronology and human occupation of late Pleistocene and early Holocene lakes, rivers, and wetlands in the Lake Bonneville basin. We have classified paleo-river channels of these ages as “gravel channels” and “sand channels.” Gravel channels are straight to curved, digitate, and have abrupt bulbous ends. They are composed of fine gravel and coarse sand, and are topographically inverted (i.e., they stand higher than the surrounding mudflats). Sand channels are younger and sand filled, with well-developed meander-scroll morphology that is truncated by deflated mudflat surfaces. Gravel channels were formed by a river that originated as overflow from the Sevier basin along the Old River Bed during the late regressive phases of Lake Bonneville (after 12,500 and prior to 11,000 14C yr B.P.). Dated samples from sand channels and associated fluvial overbank and wetland deposits range in age from 11,000 to 8800 14C yr B.P., and are probably related to continued Sevier-basin overflow and to groundwater discharge. Paleoarchaic foragers occupied numerous sites on gravel-channel landforms and adjacent to sand channels in the extensive early Holocene wetland habitats. Reworking of tools and limited toolstone diversity is consistent with theoretical models suggesting Paleoarchaic foragers in the Old River Bed delta were less mobile than elsewhere in the Great Basin.  相似文献   

20.
Luminescence dating of extensive dune fields and associated eolian sandsheets provided a chronology of recently recognized Pleistocene and early Holocene dry climate episodes in the currently humid warm temperate northern-northeastern Gulf of Mexico region. Scattered parabolic dunes and clusters of intersecting parabolic dunes, along with elongated shore-transverse and shore-parallel dunes, developed. These landforms occur in a 390-km-long and 2- to 3-km-wide, semicontinuous belt in southeast Alabama and northwestern Florida. Dune elevations reach ± 22 m. Sangamon coastal barrier sectors were the primary source of the eolian sand. Deflation was coeval with early Wisconsin to mid-Holocene marine low sea-levels and associated distant shorelines. Early Holocene dune dates were synchronous, with indications of a hypsithermal dry interval in southeast Louisiana, the Yucatan, and the south Atlantic seaboard. Overlapping with dry episodes in Yucatan and the High Plains, Texas dunes and Louisiana and Texas prairie mounds, especially in the southwest Texas coast still dominated by dry climate, suggests intervals of early to late Holocene drought. The dates provide the basis for identifying and correlating Wisconsin, early, and late Holocene climate phases between currently semiarid and humid, coastal and interior areas. They contribute to future studies, including interregional paleoclimate modeling. Although Pleistocene coastal eolian deposition coincided with glaciation in the northern interior and with cooler temperatures of a reduced Gulf of Mexico, Holocene aridity phases may have been related to major variations in the position of high-pressure cells, storm tracks, and branches of the jet stream, and even to prolonged La Niña conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号