首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dust acoustic waves are investigated in plasma system containing dynamic and streaming dust, supertherrmal electrons and ions. Linear and nonlinear studies are carried out and elaborated with the help of parameters taken for Saturn’s F-ring. An energy integral equation is obtained by using the Sagdeev potential approach, and results are displayed by solving it analytically and numerically. The dependence of nonlinear structures on κ values, the ratio of electron to dust equilibrium densities μ ed , Mach number M, and dust streaming speed v d0 have been presented. The streaming speed appears as a destructive partner for the Mach number M in the pseudoenergy equation and hence plays a dominant modifying role in the formation of nonlinear structures. It plays a destructive role for some of the solitons and works as a source, for the emergence of new solitons (region). Formation of double layers are also investigated and shown that the amplitude, width and existence of double layers structures are predominantly affected by the presence of superthermal electrons, ions, and streaming dust beam.  相似文献   

2.
Based on data from the SONG and SPR-N multichannel hard electromagnetic radiation detectors onboard the CORONAS-F space observatory and the X-ray monitors onboard GOES satellites, we have distinguished the thermal and nonthermal components in the X-ray spectrum of an extreme solar flare on January 20, 2005. In the impulsive flare phase determined from the time of the most efficient electron and proton acceleration, we have obtained parameters of the spectra for both components and their variations in the time interval 06:43–06:54 UT. The spectral index in the energy range 0.2–2 MeV for a single-power-law spectrum of accelerated electrons is shown to have been close to 3.4 for most of the time interval under consideration. We have determined the time dependence of the lower energy cutoff in the energy spectrum of nonthermal photons E γ0(t) at which the spectral flux densities of the thermal and nonthermal components become equal. The power deposited by accelerated electrons into the flare volume has been estimated using the thick-target model under two assumptions about the boundary energy E 0 of the electron spectrum: (i) E 0 is determined by E γ0(t) and (ii) E 0 is determined by the characteristic heated plasma energy (≈5kT (t)). The reality of the first assumption is proven by the fact that plasma cooling sets in at a time when the radiative losses begin to prevail over the power deposited by electrons only in this case. Comparison of the total energy deposited by electrons with a boundary energy E γ0(t) with the thermal energy of the emitting plasma in the time interval under consideration has shown that the total energy deposited by accelerated electrons at the beginning of the impulsive flare phase before 06:47 UT exceeds the thermal plasma energy by a factor of 1.5–2; subsequently, these energies become approximately equal and are ~(4–5) × 1030 erg under the assumption that the filling factor is 0.5–0.6.  相似文献   

3.
Assuming that the formation of the ring current belt is a direct consequence of an enhanced convection of plasma sheet protons, the expression for the energy injection rate UR is formulated as a function of the cross-tail potential drop φCT for a simple electric field-magnetic field model. It is shown that an approximate expression for UR thus formulated consists of two parts: (i) the first part UR1, which is linearly proportional to φCT, is supplied by the corotation electric field and (ii) the second part UR>2, which is proportional to φ2CT, is supplied by the solar wind energy input to the magnetosphere. The second part UR2 dominates the ring current energy input when the cross-tail potential drop φCT is greater than ~ 95 keV, namely during disturbed periods. An important finding is that the second part UR2 of the ring current energy input is shown to be proportional to the solar wind-magnetosphere energy coupling function ?, recovering the observationally established relationship. Therefore, the present study verifies that an enhanced convection is the cause of the ring current formation.  相似文献   

4.
Using the STEERB (storm-time evolution of electron radiation belt) code, we simulate the evolution of radiation belt energetic electrons during geomagnetic storms in the case of low energy electron injection. The STEERB code is used to solve the three-dimensional Fokker–Planck diffusion equation which incorporates wave-particle interaction, Coulomb collisions and radial diffusion. Numerical simulations show that under the short time (~1 h) injection of low energy (0.1 MeV≤E k ≤0.2 MeV) fluxes of radiation belt energetic electrons can increase during the entire storm period. During the main and recovery phases, such injection efficiently enhances chorus-driven acceleration of radiation belt energetic electrons, allowing fluxes of energetic electrons by a factor of 1–2 orders higher than those in the absence of injection. The current results indicate that substorm-induced electron injection must be incorporated to investigate the evolution of radiation belt energetic electrons.  相似文献   

5.
Energy distributions of the thermal electrons in the ionospheric plasma were measured on 16 January 1974 and 16 September 1976 by two Japanese rockets, K-9M-45 and K-9M-55 respectively near the focus of Sq current vortex. The main effort was to investigate the energy state of the thermal electrons in a localized hot electron layer which occurs at a height of around 105 km in winter.The results obtained on 16 January 1974 showed that the thermal electrons in the hot electron layer had not a pure Maxwell distribution. While on 16 September 1976, the energy distribution of the electrons was found to be almost Maxwellian in the dynamo region as well as the F-region.  相似文献   

6.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

7.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

8.
Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than ≈ 3g0BiB0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0 (Bi denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEp + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Ep in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (~ 1 km) auroral arc.  相似文献   

9.
The relationship between the simultaneously observed positions of the maximum omnidirectional flux of the quiet-time ring current positive ions (Λφ) and the maximum electron temperature ΛT in the trough is studied in the midnight sector of the topside ionosphere. Λφ maps to the inner edge of the plasma sheet where ring current fluxes change from nearly isotropic to trapped. At altitudes near 2500 km, the electron temperature at trough latitudes were always sharply peaked. Although Λφ varied with the level of geomagnetic activity, (Λφ ? ΛT) did not. These observations support the hypothesis that the quiet-time ring current is the source of elevated electron temperatures found near the plasmapause. Below 1300 km, peaked electron temperature distributions in the trough were not consistent features of the data. It is shown that (Λφ ? ΛT) increased with decreasing altitude. The possible influences of a westward component to the convective electric field and ionospheric refraction of ion cyclotron waves are discussed.  相似文献   

10.
In this paper, we study the domain wall with time dependent displacement vectors based on Lyra geometry in normal gauge i.e. displacement vector φ i * =[β(t),0,0,0]. The field theoretic energy momentum tensor is considered with zero pressure perpendicular to the wall. We find an exact solutions of Einstein’s equation for a scalar field φ with a potential V(φ) describing the gravitational field of a plane symmetric domain wall. We have seen that the hyper surfaces parallel to the wall (z=constant) are three dimensional de-sitter spaces. It is also shown that the gravitational field experienced by test particle is attractive.  相似文献   

11.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

12.
In the spherically-symmetric case, a computer simulation of the electron acceleration inside the outflow channel of the pulsar magnetosphere is produced. The stationary motion of electrons is shown to be unstable in the case of > c, where is a parameter describing inhomogeneity of the background charge, and c is its critical value. The arising non-stationary motion of electrons leads to a formation of electron bunches, which move chaotically. The mean electron energy appears to be much greater at the non-stationary motion, than at the stationary one. The time-averaged parameters of the non-stationary electron flow and their dependence upon have been investigated. Distributions of the mean values of parameters (charge density, electron velocity, electric field energy density, pressure, and internal energy of the gas composed of the electron bunches) over the magnetosphere altitude have been investigated. The mean spectra of the charge density have been obtained. The results of numerical investigation of the spherically-symmetric model are used for estimation of the electron energy and of the electron flux in the case of the more realistic model. The radioemission loss is estimated, and is shown to be large enough for explaining the radiopulsar phenomenon as a thermal radioemission of the pulsar magnetosphere. In particular, such common properties of the pulsar radioemission as the high bright temperature, the sharp radioemission directivity, and the characteristic turn-over of the radioemission spectrum at the frequency of the order 108 Hz are found a natural explanation in frames of this model.  相似文献   

13.
Weak dust acoustic (DA) solitary waves are investigated in a mixed nonthermal high energy-tail electron distribution, focusing on the influence of an interplay between nonthermality and superthermality on the DA soliton energy. It is shown that in a pure superthermal plasma (α=0), electron thermalization (κ→∞) leads to an increase of the energy carried by the soliton. Addition of minute quantities of nonthermal electrons drastically modifies the κ-dependence of the soliton energy E κ,α . The latter first decreases, then exhibits a local minimum before leveling at a constant value. The energy exchange between the non-Maxwellian electrons and the localized solitary structure depends drastically on the interplay between superthermality and nonthermality.  相似文献   

14.
Due to the relatively high stream densities involved, collective interactions with the ambient plasma are likely to be important for the electrons producing solar hard X-ray bursts. In thick- and thin-target bremsstrahlung models the most relevant process is limitation of the invoked electron beams by ion sound wave generation in the neutralizing reverse current established in the atmosphere. For the thick target model it is shown that typical electron fluxes are near the maximum permitted by stability of the reverse current so that ion-sound wave generation may be the process which limits the electron injection rate. On the other hand the chromospheric reverse current is sufficient to supply the large total number of electrons which have to be accelerated in the corona. For the thin target the low density of the corona severely limits the possible reverse current so that the maximum upward flux of fast electrons is probably much too small to explain X-ray bursts but compatible with observations of interplanetary electrons.A distinct class of model postulates a small number of electrons confined by resonant scattering in a dense coronal slab surrounding a current sheet with continuous stochastic acceleration offsetting collisional losses. The energetic aspects of such a situation described by Hoyng (1975) are developed here by addition of equations describing the slab geometry in terms of electron diffusion by whistler scattering and of the collisional damping of the accelerating Langmuir waves. Solution of these equations results in values for the fieldB(70–350 G), densityn 0(2–5 × 1012 cm –3), slab dimensions (1018 km2 × 0.3–3 km) and relative Langmuir energy density (10–3 – 10–2) required to produce the observed range of bursts. It is pointed out, however, that there may be no real gain in electron number requirements since the fast electrons in the emitting slab would be constantly swept out along with the frozen-in plasma as dissipation proceeds so that a large total number of electrons is still required. It could in fact be that just such a coronal region is the injection mechanism for the thick-target model.On leave from Department of Astronomy, University of Glasgow, Scotland.  相似文献   

15.
Double layers (DLs) structures in a collisionless Lorentzian plasma consisting of warm ions and two-temperature superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to extended Korteweg-de Vries (EK-dV) equation. It is shown that in temperatures lower than critical value for densities around first critical concentrations of cold electrons ( \(d \to d_{c_{1}}\) ) DL structures coexist. The effects of cold to hot electron density ratio d, cold to hot electrons temperature ratio σ, spectral index of cold and hot electrons κ c and κ h , ion temperature δ on DLs structure are also, discussed.  相似文献   

16.
C. C. Harvey 《Solar physics》1975,40(1):193-216
In an earlier paper (Harvey and Aubier, 1973) the large scale radial electron density gradient in the corona and solar wind was shown to cause the phase velocity of plasma waves to decrease as they propagate away from the Sun, thus leading to appreciable Landau damping of the plasma waves. It is proposed here that this same phase velocity decrease creates conditions which facilitate the stabilisation of a beam of exciter electrons of finite duration, provided that three conditions are fulfilled. Two of these conditions concern the velocity-time distribution of the exciter electrons at their point of ejection from the Sun, while the third is simply that, above a certain altitude, the coronal electron density decreases with altitude r faster than r ?2. The plasma wave source is then associated with the leading edge of the electron stream. The spatial density of the power converted into plasma waves is calculated as a function of position and time, and is shown to be independent of the nature of the stabilisation mechanism. The maximum of this power density is found to move outwards from the Sun at a uniform speed when a simple electron injection model with a Maxwellian velocity distribution is introduced.  相似文献   

17.
Compressive solitons of low and high amplitudes are established in this weakly relativistic and magnetized plasma model. The assigned direction of soliton propagation to the direction of the magnetic field, supplemented by the corresponding ion initial streaming speed (v 0) determines the lower limit of the initial electron streaming speed (v 0) in its interval of existence to produce solitons for a given value of the speed of light c. Further, lower limit of c specified by the corresponding energy (or temperature) to yield relativistic compressive solitons is also predicated. Interestingly, the increased initial streaming speed of electrons is found to play less effective role in the steepening growth of amplitudes of compressive solitons due to mode one than those corresponding to the mode two.  相似文献   

18.
The influence of low-frequency electrostatic turbulence on the flux of precipitating magnetospheric electrons is analyzed in the framework of the quasilinear kinetic equation. It is shown that an electron population in a turbulent region, with an electric field parallel to the ambient magnetic field, can be separated into two parts by introducing a pitch angle dependent runaway velocity vr(θ). Lower energy electrons with parallel velocity v < vr are effectively scattered by plasma waves, so that they remain in the main population and are subjected to an anomalous transport equation. A distribution function fv?4 (or the particle flux vs energy JE?1) is established in this velocity range. Faster electrons with v ? vr are freely accelerated by a parallel electric field, so that they contribute directly to hot electron fluxes which are observed at ionospheric altitudes. New expressions are derived for the magnetic-field aligned current and the electron energy flux implied by this model. These expressions agree well with empirical relations observed in auroral inverted-V structures.  相似文献   

19.
By the test particle method, we have investigated the kinematic characteristics of the electrons in the reconnecting current sheet with a guiding magnetic field Bz after they are accelerated by the supper-Dreicer electric field Ez. Firstly, the influence of the guiding magnetic field Bz on the particle acceleration is discussed under the assumption that Bz is constant in magnitude but different in orientation with respect to the electric field. In this case, the variation of the Bz direction directly leads to the variation of electron trajectories and makes electrons leave the current sheet along different paths. If Bz is parallel to Ez, the pitch angles of the accelerated electrons are close to 180°. If Bz is anti-parallel to Ez, the pitch angles of the accelerated electrons are close to 0°. The orientation of the guiding magnetic field just makes the electric field accelerate selectively the electrons in different regions, but does not change the energy distribution of electrons, and the finally derived energy spectrum is the common power-law spectrum E. In typical coronal conditions, γ is about 2.9. The further study indicates that the magnitude of γ depends on the strengths of the guiding magnetic field and reconnecting electric field, as well as the scale of the current sheet. Then, the kinematic characteristics of the accelerated electrons in the current sheet with multiple X-points and O-points are also studied. The result indicates that the existences of the X-points and O-points have the particles constrained in the accelerating region to obtain the maximum acceleration, and the final energy spectrum has the characteristics of multi-power law spectra.  相似文献   

20.
A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The Langmuir condition (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distributions of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号