首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Bursts of energetic particles have been observed simultaneously by IMP-6 (≈ 24 RE, Rp ? 0.21 MeV) and IMP-8 (≈ 29.7 RE, Ep ? 0.29 MeV, Ee ? 0.22 MeV) in the distant magnetotail on Nov. 26, 1973 at a time when the auroral electrojet showed significant intensification. During one of the bursts IMP-6 was briefly in the duskside plasma sheet and IMP-8 was only a few RE away at the magnetopause/boundary layer, as revealed from magnetic field and plasma measurements. The time behaviour of the proton intensities and anisotropies indicate that the particles have their origin in the plasma sheet. Measurements of the energy spectra during one of the bursts in the boundary layer/magnetosheath show significant variation of the differential exponent and suggest a rigidity-dependent escape of energetic particles from the plasma sheet into the magnetosheath. With the high temporal resolution of IMP-8 data intensity peaks of relativistic electrons and/or energetic protons could be detected at the magnetopause when Bx ≈ 0 γ. They appear superimposed on the general intensity time profile of the burst and last 2–3 min. It is concluded that some of the relativistic electrons can escape from the plasma sheet very fast and form a temporally-varying layer at the magnetopause.  相似文献   

2.
HEOS-2 low energy electron data (10 eV–3.7 keV) from the LPS Frascati plasma experiment have been used to identify three different magnetospheric electron populations. Magnetosheathlike electron energy spectra (35–50 eV) are characteristic of the plasma mantle, entry layer and cusps from the magnetopause down to 2–3 RE Plasma sheet electrons (energy > 1 keV) are found at all local times, with strong intensities in the early morning quadrant and weaker intensities in the afternoon quadrant. The plasma sheet shows a well defined inner edge at all local times and latitudes, the inner edge coinciding probably with the plasmapause. The plasma sheet does not reach the magnetopause, but it is separated from it by a boundary layer electron population that is very distinct from the other two electron populations, most electrons having energies 100–300 eV.We map these three electron populations from the magnetopause down to the high latitude near earth regions, by making use of the HEOS-2 low latitude inbound passes and the high latitude outbound passes (in Solar Magnetic (SM) coordinates). The boundary layer extends along the magnetopause up to 5–7 RE above the equator; at higher latitudes it follows the magnetic lines of force and it is found closer and closer to the earth, so that it has the same invariant latitudes of the system 1 currents observed by Iijima and Potemra (1976) in their region 1. The plasma sheet can be mapped into their region 2 and the cusp-entry layer-plasma mantle can be mapped into their cusp currents region. The boundary layer is observed for any Interplanetary Magnetic Field (IMF) direction. We speculate that magnetosheath particles penetrate into the magnetosphere everywhere along the magnetopause. The electron energization, however, is observed only in the boundary layer, on both dawn and dusk side and could be due to the polarization electric field at magnetopause generated by the magnetosheath plasma bulk motion in the region where such motion is roughly perpendicular to the magnetospheric magnetic field. The electron energization is absent in the regions (entry layer and plasma mantle) where the sheath plasma motion is roughly parallel or antiparallel to the magnetospheric magnetic field.  相似文献   

3.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

4.
HEOS-2 has observed energetic electrons (> 40 keV) in the high latitude magnetosphere appearing as one or more peaks outside and often well separated from the trapping boundary. Most of the observations are between 70° and 80° invariant latitudes both in the day and nightside. The peaks are located in the dayside adjacent to the polar cusp and coincide in the nightside with the edge of the plasma sheet. The electron peak intensity on the nightside shows a clear correlation with AE. The electron peak intensities on the dayside exceed those on the nightside and are generally higher in the pre-noon than in the afternoon sector. Observations on the dayside in the distant cusp region and in the adjacent magnetosheath show high and fluctuating intensities of energetic electronswith an energy spectrum much harder than in the outermost trapping region.

This observational evidence suggests different source regions for these energetic electrons: one in the distant geomagnetic tail and another one around the dayside cusp indentation.  相似文献   


5.
Low-energy particle trajectories in an idealized magnetotail magnetic field are investigated to determine the accessibility of magnetosheath protons and electrons to the plasma sheet along the flanks of the tail magnetopause. The drift motion of the positively (negatively) charged particles incident on the dawn (dusk) magnetotail flank causes such particles to penetrate deeper into the magnetotail. For certain combinations of particle energy, incident velocity vector and initial penetration point on the tail magnetopause, the incident particles can become trapped in the plasma sheet, after which their net drift motion then provides a current capable of supporting the entire observed magnetotail field. The results further indicate that the bulk of the solar wind plasma just outside the distant tail boundary, which streams preferentially in a direction along the magnetopause away from the Earth at velocities around 400 km s?1, can be caught up in the tail if the initial penetration point is within about 2RE, of the quasi-neutral sheet. It is suggested that a large fraction of the magnetotail plasma is composed of former solar wind particles which have penetrated the magnetospheric boundary at the tail flanks.  相似文献   

6.

Crossings of the heliospheric current sheet (HCS) at the Earth’s orbit are often associated with observations of anisotropic beams of energetic protons accelerated to energies from hundreds of keV to several MeV and above. A connection between this phenomenon and the occurrence of small-scale magnetic islands (SMIs) near reconnecting current sheets has recently been found. This study shows how pre-accelerated protons can be energized additionally due to oscillations of multiple SMIs inside the ripple of the reconnecting HCS. A model of the electromagnetic field of an oscillating 3D SMI with a characteristic size of ~0.001 AU is developed. A SMI is supposed to be bombarded by protons accelerated by magnetic reconnection at the HCS to energies from ~1keV to tens of keV. Numerical simulations have demonstrated that the resulting longitudinal inductive electric fields can additionally reaccelerate protons injected into a SMI. It is shown that there is a local “acceleration” region within the island in which particles gain energy most effectively. As a result, their average escape energies range from hundreds of keV to 2 MeV and above. There is almost no particle acceleration outside the region. It is shown that energies gained by protons significantly depend on the initial phase and the place of their entry into a SMI but weakly depend on the initial energy. Therefore, low-energy particles can be accelerated more efficiently than high-energy particles, and all particles can reach the total energy limit upon their escape from a SMI. It is also found that the escape velocity possesses a strong directional anisotropy. The results are consistent with observations in the solar wind plasma.

  相似文献   

7.
Fine time resolution observations of the angular distributions of the intensities of energetic electrons (220 ≤ E e ≤ 500 keV) by the IMP-7 and 8 spacecraft during the onsets of solar electron events and the technique of mapping the solar wind to the solar corona have been incorporated in this work in order to obtain the large-angle scattering distance of these particles under different configurations of the large scale structure of the interplanetary medium. It is found that in the presence of stream-stream interaction regions with compressed magnetic fields beyong 1 AU, the large-angle scattering is determined by the distance along the streamlines from the spacecraft to their intersection by a faster solar wind stream. In cases of diverging magnetic fields the estimated large-angle scattering distance exceeds 1 AU.  相似文献   

8.
We present results from an investigation of the plasma sheet encounter signatures observed in the Jovian magnetosphere by the Energetic Particles Detector (EPD) and Magnetometer (MAG) onboard the Galileo spacecraft. Maxima in ion flux were used to identify over 500 spacecraft encounters with the plasma sheet between radial distances from Jupiter from 20 to 140RJ during the first 25 orbits (4 years of data). Typical signatures of plasma sheet encounters show a characteristic periodicity of either 5 or 10 hours that is attributed to an oscillation in the relative distance between the spacecraft and the plasma sheet that arises from the combination of planetary rotation and offset magnetic and rotational axes. However, the energetic particle and field data also display much variability, including instances of intense fluxes having little to no periodicity that persist for several Jovian rotation periods. Abrupt changes in the mean distance between the plasma sheet and the spacecraft are suggested to account for some of the transitions between typical flux periodicities associated with plasma sheet encounters. Additional changes in the plasma sheet thickness and/or amplitude of the plasma sheet displacement from the location of the spacecraft are required to explain the cases where the periodicity breaks down but fluxes remain high. These changes in plasma sheet characteristics do not display an obvious periodicity; however, the observations suggest that dawn/dusk asymmetries in both the structure of the plasma sheet and the frequency of anomalous plasma sheet encounters are present. Evidence of a thin, well-ordered plasma sheet is found out to 110RJ in the dawn and midnight local time sectors, while the dusk magnetosphere is characterized by a thicker, more disordered plasma sheet and has a potentially more pronounced response to an impulsive trigger. Temporal variations associated with changing solar wind conditions are suggested to account for the anomalous plasma sheet encounters there.  相似文献   

9.
Energetic proton (Ep ? 50 keV) and magnetic field observations during crossings of the Earth's Bow Shock by the IMP-7 and 8 spacecraft are incorporated in this work in order to examine the effect of the Bow Shock on a pre-existing proton population under different “interplanetary magnetic field-Bow Shock” configurations, as well as the conditions for the presence of the Bow Shock associated energetic proton intensity enhancements. The presented observations indicate that the dominant process for the efficient acceleration of ambient energetic particles to energies exceeding ~ 50 keV is by “gradient-B” drifting parallel to the induced electric field at quasi-perpendicular Bow Shocks under certain well defined limitations deriving from the finite and curved Bow Shock surface. It is shown that the proton acceleration at the Bow Shock is most efficient for high values of the upstream magnetic field (in general B1 > 8γ), high upstream plasma speed and expanded Bow Shock fronts, as well as for directions of the induced electric field oriented almost parallel to the flanks of the Bow Shock, i.e. when the drift distance of protons parallel to the electric field at the shock front is considerably smaller than the local radius of curvature of the Bow Shock. The implications of the presented observations of Bow Shock crossings as to the source of the energetic proton intensity enhancements are discussed.  相似文献   

10.
We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.  相似文献   

11.
In this paper we are going to review the latest estimates for the particle background expected on the X-IFU instrument onboard of the ATHENA mission. The particle background is induced by two different particle populations: the so called “soft protons” and the Cosmic rays. The first component is composed of low energy particles (< 100s keV) that get funnelled by the mirrors towards the focal plane, losing part of their energy inside the filters and inducing background counts inside the instrument sensitivity band. The latter component is induced by high energy particles (> 100 MeV) that possess enough energy to cross the spacecraft and reach the detector from any direction, depositing a small fraction of their energy inside the instrument. Both these components are estimated using Monte Carlo simulations and the latest results are presented here.  相似文献   

12.
Bursts of energetic electrons (from >40keV up to 2MeV) as distinct from the magnetopause electron layer observed by Domingo et al. (1977) have been observed in the magnetosheath and in the solar wind by HEOS-2 at high-latitudes. Although these electrons are occasionally found close to the bow shock and simultaneously with low frequency (magnetosonic) upstream waves our observations strongly indicate that these electrons are of exterior cusp origin. Indeed, the flux intensity is highest in the exterior cusp region and decreases as the spacecraft moves away from it both tailward or upward. The energy spectrum becomes harder with increasing radial distance from the exterior cusp. The measured anisotropy indicates that the particles are propagating away from the exterior cusp. The magnetic field points to the exterior cusp region when these electrons are observed, being, for solar wind observations, centred at longitude 0° or 180° rather than along the spiral and in the magnetosheath, being usually different from the 90° or 270° orientation typical of that region. We exclude, therefore, that acceleration in the bow shock is the source of these particles because B is not tangent to the shock when bursts are observed. We have also found a one to one correlation between geomagnetic storms' recovery phases and intense, continuous observations of >40 keV electrons in the magnetosheath, while, on the other hand, during geomagnetically quiet (Dst) periods bursts are observed only if AE is much larger than average.  相似文献   

13.
The Suprathermal Plasma Analysers on GEOS-2 are able to make differential energy measurements of plasma particles down to sub-eV energies because the entire sensor package can be biased relative to the spacecraft. When the package is biased negatively with respect to space potential, low energy positive ions are sucked in and are more easily detected against the background. Large fluxes of ions with temperatures of the order of 1 eV or less were consistently detected at space potential when the spacecraft was in the magnetosheath though not when it was in the nearby magnetosphere. This apparent geophysical correlation, suggesting that the ions were part of the magnetosheath ion population, was contradicted by the fact that the ions showed no signs of the large drift velocity associated with the electric field in the magnetosheath. We conclude, after further investigation, that the observed ions were probably sputtered as neutrals from the spacecraft surface by the impact of solar wind ions and subsequently ionized by sunlight or electron impact. The effect of sputtering by solar wind ions has not been previously observed, although it could have consequences for the long-term stability of spacecraft surfaces.  相似文献   

14.
We have an unique opportunity to compare the magnetospheres of two non-magnetic planets as Mars and Venus with identical instrument sets Aspera-3 and Aspera-4 on board of the Mars Express and Venus Express missions. We have performed both statistical and case studies of properties of the magnetosheath ion flows and the flows of planetary ions behind both planets. We have shown that the general morphology of both magnetotails is generally identical. In both cases the energy of the light (H+) and the heavy (O+, etc.) ions decreases from the tail periphery (several keV) down to few eV in the tail center. At the same time the wake center of both planets is occupied by plasma sheet coincident with the current sheet of the tail. Both plasma sheets are filled by accelerated (500-1000 eV) heavy planetary ions. We report also the discovery of a new feature never observed before in the tails of non-magnetic planets: the plasma sheet is enveloped by consecutive layers of He+ and H+ with decreasing energies.  相似文献   

15.
《Planetary and Space Science》1999,47(3-4):557-576
A significant flux enhancement in energetic particles (E ∼ 60–⩾260 keV),showing internal fine structure interpreted to represent signatures produced during the traversalof various cometary boundaries in P⧸Grigg-Skjellerup, was recorded by the EPONA instrumentaboard spacecraft Giotto on 10 July 1992. A further internally structured flux enhancement withabout the same amplitude, recorded by EPONA in the energy range ∼60–100 keV but detected90×103 km further on along the Giotto trajectory, is herein compared with theP⧸Grigg-Skjellerup record. Possible explanations for the second flux enhancement areindividually considered and it is suggested, on the basis of the available evidence, that itconstituted the signature of another smaller comet, either having a separate genesis from, ororiginating in a splitting of, the P⧸Grigg-Skjellerup nucleus.  相似文献   

16.
Plasma and magnetic field data from PROGNOZ-7 have revealed that solar wind (magnetosheath) plasma elements may penetrate the dayside magnetopause surface and form high density regions with enhanced cross-field flow in the boundary layer.The injected magnetosheath plasma is observed to have an excess drift velocity as compared to the local boundary layer plasma, comprising both “cold” plasma of terrestrial origin and a hot ring current component. A differential drift between two plasma components can be understood in terms of a momentum transfer process driven by an injected magnetosheath plasma population. The braking action of the injected plasma may be described as a dynamo process where particle kinetic energy is transferred into electromagnetic energy (electric field). The generated electric field will force the local plasma to ε×B-drift, and the dynamo region therefore also constitutes an accelerator region for the local plasma. Whenever energy is dissipated from the energy transfer process (a net current is flowing through a load), there will also be a difference between the induced electric field and the v×B term of the generator plasma. Thus, the local plasma will drift more slowly than the injected generator plasma.We will present observations showing that a relation between the momentum transferred, the injected plasma and the momentum taken up by the local plasma exists. For instance, if the local plasma density is sufficiently high, the differential drift velocity of the injected and local plasma will be small. A large fraction of the excess momentum is then transferred to the local plasma. Conversely, a low local plasma density results in a high velocity difference and a low fraction of local momentum transfer.In our study cases the “cold” plasma component was frequently found to dominate the local magnetospheric plasma density in the boundary layer. Accordingly, this component may have the largest influence on the local momentum transfer process. We will demonstrate that this also seems to be the case. Moreover we show that the accelerated “cold” plasma component may be used as a tracer element reflecting both the momentum and energy transfer and the penetration process in the dayside boundary layer.The high He+ percentage of the accelerated “cold” plasma indicates a plasmaspheric origin. Considering the quite high densities of energetic He+ found in the boundary layer, the overall low abundance of He+ (as compared to e.g. O+) found in the plasma sheet and outer ring current evidently reduces the importance of the dayside boundary layer as a plasma source in the large scale magnetospheric circulation system.  相似文献   

17.
The medium energy particle spectrometer (electrons of energy > 20 keV, protons > 25 keV) on board ISEE-2 has measured very similar pitch angle distributions and intensities during “flux transfer” events in the magnetosheath and events previously designated as “inclusion” events in the magnetosphere on a single pass through the magnetopause. This is interpreted as strong evidence that magnetic field lines in the magnetosphere can connect to field lines in the magnetosheath, at least locally and for brief times, allowing the same population ofparticles to be observed on both sides of the boundary. In addition, a simple mathematical model is provided incorporating a time constant for the process re-supplying particles to the open flux tube. The observed data are satisfactorily reproduced using a time constant of 46 s, which is comparable to the half-bounce time of protons at this position.  相似文献   

18.
The Solar Electron and Proton Telescope (SEPT) aboard the Solar Terrestrial Relations Observatory (STEREO) is designed to provide the three-dimensional distribution of energetic electrons and protons with good energy and time resolution. Each SEPT instrument consists of two double-ended magnet–foil particle telescopes which cleanly separate and measure electrons in the energy range from 30 keV to 400 keV and protons from 60 keV to 7000 keV. Anisotropy information on a non-spinning spacecraft is provided by two separate but identical instruments: SEPT-E aligned along the Parker spiral magnetic field in the ecliptic plane looking both towards and away from the Sun, and SEPT-NS aligned vertical to the ecliptic plane looking towards North and South. The dual set-up refers to two adjacent sensor apertures for each of the four viewing directions SUN, ANTISUN, NORTH, and SOUTH: one for protons, one for electrons. In this contribution a simulation of SEPT utilizing the GEANT4 toolkit has been set up with an extended instrument model in order to calculate improved response functions of the four different telescopes. Here we applied these response functions to quiet-time periods during the minimum between Solar Cycles 23 and 24 (SC-23 and SC-24) when the flux of ions above 10 MeV is dominated by galactic cosmic rays (GCRs). The corresponding spectra are determined by a force-field approximation and used as input for our calculation, leading to good agreement of the computed ion count rates with measurements of SEPT above 400 keV.  相似文献   

19.
We examined the energetic electron and proton data from different instruments on the dawn-dusk polar orbiting satellite AZUR during periods of high electrojet activity (AE > 500 γ) and find that there is a high probability of seeing during these periods relativistic electron bursts (?0.7 MeV) and in some cases also high-energy proton bursts (?250??500 keV). Fluxes, composition, energy spectra and spike forms are shown and are compared with similar burst events in the geomagnetic tail observed by other authors. It is suggested that the burst events discussed in this paper are the low-altitude signature of electron and proton bursts generated in the geomagnetic tail.  相似文献   

20.
This paper discusses the experimental results on electron precipitation in a diffuse aurora obtained by a sounding rocket launched from ANDENES (L ~ 6·2) on 3 November 1968. A considerable increase in the intensity of low energy electrons, Ee ? 5 keV, followed a large precipitation of more energetic electrons Ee ? 5 keV. From the observation of angular distributions and an estimate of the diffusion coefficient (Dα ? 10?3 (sec)?2), it is suggested that this higher energy precipitation is induced by gyroresonant interactions of magnetospheric electrons with radiation in the whistler mode. The lower energy precipitation separated in time and/or space, shows quasi-periodic modulations in the 5–15 sec range with periods close to the bounce period. It is suggested that this precipitation is the result of bounce-resonance interactions with electrostatic waves in the equatorial plane. Finally, from a comparison between the experimental energy spectra and plasma sheet spectra it can be concluded that these electrons are injected from the plasma sheet during a substorm and are then diffused and precipitated by energy dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号