首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub-Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional, attitudinal and asset factors influencing urban vulnerability. Multiple methods were applied to cover the full range of vulnerabilities and to identify potential response strategies, including: model-based forecasts, spatial analyses, document studies, interviews and stakeholder workshops. We demonstrate the potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential for strategic coordination and action. To better adapt to urban flooding and thereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning-by-doing’ process of adaptation.  相似文献   

2.
More recently, driven by rapid and unguided urbanisation and climate change, Ghanaian cities are increasingly becoming hotspots for severe flood-related events. This paper reviews urbanisation dynamics in Ghanaian cities, and maps flood hazard zones and access to flood relief services in Kumasi, drawing insight from multi-criteria analysis and spatial network analysis using ArcGIS 10.2. Findings indicate that flood hazard zones in Kumasi have been created by natural (e.g., climate change) and anthropogenic (e.g., urbanisation) factors, and the interaction thereof. While one would have expected the natural factors to guide, direct and steer the patterns of urban development from flood hazard zones, the GIS analysis shows that anthropogenic factors, particularly urbanisation, are increasingly concentrating population and physical structures in areas liable to flooding in the urban environment. This situation is compounded by rapid land cover/use changes and widespread haphazard development across the city. Regrettably, findings show that urban residents living in flood hazard zones in Kumasi are also geographically disadvantaged in terms of access to emergency services compared to those living in well-planned neighbourhoods.  相似文献   

3.
Taiwan suffers from losses of economic property and human lives caused by flooding almost every year. Flooding is an inevitable, reoccurring, and the most damaging disaster in Taiwan since Taiwan is located in the most active tropic cyclone formation region of the Western Pacific. Flooding problem is further worse in land subsidence areas along southwestern coast of Taiwan due to groundwater overdraft. Increasing number of people is threatened with floods owing to climate change since it would induce sea level rise and intensify extreme rainfall. Assessments of flooding vulnerability depend not only on flooding severity, possible damage of assets exposed to floods should also be simultaneously considered. This paper aims at exploring how climate change might impact the flooding vulnerability of lowland areas in Taiwan. A flooding vulnerability evaluation scheme is proposed in this study which incorporates flooding severity (the maximum inundation depth determined by a two-dimensional model) and potential economic losses for various land uses. Effects of climate change on flooding vulnerability focus on alterations of rainfall depth for various recurrence intervals. The flood-prone Yunlin coastal area, located in southwestern Taiwan, is chosen to illustrate the proposed methodology. The results reveal that reducing flooding vulnerability can be achieved by either reducing flooding severity (implementation of flood-mitigation measures) or decreasing assets exposed to floods (suspension of land uses for flood-detention purpose). Performance of currently implemented flood-mitigation measures is insufficient to reduce flooding vulnerability when facing with climate change. However, the scenario suggested in this study to sustain room for floods efficiently reduces flooding vulnerability in both without- and with climate change situations. The suggestions provided in this study could support decision processes and help easing flooding problems of lowland management in Taiwan under climate change.  相似文献   

4.
Dube  Kaitano  Nhamo  Godwell  Chikodzi  David 《GeoJournal》2021,87(4):453-468

Climate change-induced extreme weather events have been at their worst increase in the past decade (2010–2020) across Africa and globally. This has proved disruptive to global socio-economic activities. One of the challenges that has been faced in this regard is the increased coastal flooding of cities. This study examined the trends and impacts of coastal flooding in the Western Cape province of South Africa. Making use of archival climate data and primary data from key informants and field observations, it emerged that there is a statistically significant increase in the frequency of flooding and consequent human and economic losses from such in the coastal cities of the province. Flooding in urban areas of the Western Cape is a factor of human and natural factors ranging from extreme rainfall, usually caused by persistent cut off-lows, midlatitude cyclones, cold fronts and intense storms. Such floods become compounded by poor drainage caused by vegetative overgrowth on waterways and land pollution that can be traced to poor drainage maintenance. Clogging of waterways and drainage systems enhances the risk of flooding. Increased urbanisation, overpopulation in some areas and non-adherence to environmental laws results in both the affluent and poor settling on vulnerable ecosystems. These include coastal areas, estuaries, and waterways, and this worsens the risk of flooding. The study recommends a comprehensive approach to deal with factors that increase the risk of flooding as informed by the provisions of both the Sustainable Development Goals framework and the Sendai Framework for Disaster Risk Reduction 2015–2030 in a bid to de-risking human settlement in South Africa.

  相似文献   

5.
We examined the anthropogenic and natural causes of flood risks in six representative cities in the Gangwon Province of Korea. Flood damage per capita is mostly explained by cumulative upper 5% summer precipitation amount and the year. The increasing flood damage is also associated with deforestation in upstream areas and intensive land use in lowlands. Human encroachment on floodplains made these urban communities more vulnerable to floods. Without changes in the current flood management systems of these cities, their vulnerability to flood risks will remain and may even increase under changing climate conditions.  相似文献   

6.
Accurate modeling of urban climate is essential to predict potential environmental risks in cities. Urban datasets, such as urban land use and urban canopy parameters (UCPs), are key input data for urban climate models and largely affect their performance. However, access to reliable urban datasets is a challenge, especially in fast urbanizing countries. In this study, we developed a high-resolution national urban dataset in China (NUDC) for the WRF/urban modeling system and evaluated its effect on urban climate modeling. Specifically, an optimization method based on building morphology was proposed to classify urban land use types. The key UCPs, including building height and width, street width, surface imperviousness, and anthropogenic heat flux, were calculated for both single-layer Urban Canopy Model (UCM) and multiple-layer Building Energy Parameterization (BEP). The results show that the derived morphological-based urban land use classification could better reflect the urban characteristics, compared to the socioeconomic-function-based classification. The UCPs varied largely in spatial within and across the cities. The integration of the developed urban land use and UCPs datasets significantly improved the representation of urban canopy characteristics, contributing to a more accurate modeling of near-surface air temperature, humidity, and wind in urban areas. The UCM performed better in the modeling of air temperature and humidity, while the BEP performed better in the modeling of wind speed. The newly developed NUDC can advance the study of urban climate and improve the prediction of potential urban environmental risks in China.  相似文献   

7.
Worldwide, there is a need to enhance our understanding of vulnerability and to develop methodologies and tools to assess vulnerability. One of the most important goals of assessing coastal flood vulnerability, in particular, is to create a readily understandable link between the theoretical concepts of flood vulnerability and the day-to-day decision-making process and to encapsulate this link in an easily accessible tool. This article focuses on developing a Coastal City Flood Vulnerability Index (CCFVI) based on exposure, susceptibility and resilience to coastal flooding. It is applied to nine cities around the world, each with different kinds of exposure. With the aid of this index, it is demonstrated which cities are most vulnerable to coastal flooding with regard to the system??s components, that is, hydro-geological, socio-economic and politico-administrative. The index gives a number from 0 to 1, indicating comparatively low or high coastal flood vulnerability, which shows which cities are most in need of further, more detailed investigation for decision-makers. Once its use to compare the vulnerability of a range of cities under current conditions has been demonstrated, it is used to study the impact of climate change on the vulnerability of these cities over a longer timescale. The results show that CCFVI provides a means of obtaining a broad overview of flood vulnerability and the effect of possible adaptation options. This, in turn, will allow for the direction of resources to more in-depth investigation of the most promising strategies.  相似文献   

8.
Australia is currently experiencing climate change effects in the form of higher temperatures and more frequent extreme events, such as floods. Floods are its costliest form of natural disaster accounting for losses estimated at over $300 million per annum. This article presents an historical case study of climate adaptation of an Australian town that is subject to frequent flooding. Charleville is a small, inland rural town in Queensland situated on an extensive flood plain, with no significant elevated areas available for relocation. The study aimed to gain an understanding of the vulnerability, resilience and adaptive capacity of this community by studying the 2008 flood event. Structured questionnaires were administered in personal interviews in February 2010 to householders and businesses affected by the 2008 flood, and to institutional personnel servicing the region (n = 91). Data were analysed using appropriate quantitative and qualitative techniques. Charleville was found to be staunchly resilient, with high levels of organisation and cooperation, and well-developed and functioning social and institutional networks. The community is committed to remaining in the town despite the prospect of continued future flooding. Its main vulnerabilities included low levels of insurance cover (32% residents, 43% businesses had cover) and limited monitoring data to warn of impending flooding. Detailed flood modelling and additional river height gauging stations are needed to enable more targeted evacuations. Further mitigation works (e.g., investigate desilting Bradley’s Gully and carry out an engineering assessment) and more affordable insurance products are needed. Regular information on how residents can prepare for floods and the roles different organisations play are suggested. A key finding was that residents believe they have a personal responsibility for preparation and personal mitigation activities, and these activities contribute substantially to Charleville’s ability to respond to and cope with flood events. More research into the psychological impacts of floods is recommended. Charleville is a valuable representation of climate change adaptation and how communities facing natural disasters should organise and operate.  相似文献   

9.

The relationships between cities and underlying groundwater are reviewed, with the aim to highlight the importance of urban groundwater resources in terms of city resilience value. Examples of more than 70 cities worldwide are cited along with details of their groundwater-related issues, specific experiences, and settings. The groundwater-related issues are summarized, and a first groundwater-city classification is proposed in order to facilitate a more effective city-to-city comparison with respect to, for example, the best practices and solutions that have been put in practice by similar cities in terms of local groundwater resources management. The interdependences between some groundwater services and the cascading effects on city life in cases of shock (e.g., drought, heavy rain, pollution, energy demand) and chronic stress (e.g., climate change) are analyzed, and the ideal groundwater-resilient-city characteristics are proposed. The paper concludes that groundwater is a crucial resource for planning sustainability in every city and for implementing city resilience strategies from the climate change perspective.

  相似文献   

10.
Freitas  Gabriel  Díaz  Ismael  Bessonart  Martín  da Costa  Edwin  Achkar  Marcel 《GeoJournal》2021,86(3):1155-1171

Floods are natural processes that constitute a hazard to society when associated to improper land use. Anthropic activities in floodplains are a factor of vulnerability that converts a natural hazard into a threat factor, eventually leading to disaster. Nowadays, natural and social complex processes demand integrated assessments in order to improve their understanding, helping decision making over sustainable use of territory, as well as integrating society’s activity in ecosystems and potentials, restrictions and benefits that society obtain from them. In this context, the objective of this work was to build a composite vulnerability model for a floodplain under urban influence, using an integrated assessment approach. This model was based on three dimensions; threat, fragility and an ecosystem services provision. These dimensions were calculated using both primary and secondary information, and weights by specialists. Main results show that the area presents high vulnerability with an increasing gradient towards high and urbanized areas, associated with an important number and relevant ecosystem services. Also, a spatial heterogeneity of the three dimensions emerged, making evident this area’s complexity and the need of integrated assessments to approach it. The composite vulnerability model proposed presents an elevated potential for natural and social processes analysis in floodplains, which is crucial for these territory management. Moreover, these integrated dimensions could contribute to decision making in different levels, as well as generating important supplies for environmental management and land planning.

  相似文献   

11.
很多城市缺乏洪灾灾情资料,导致缺少洪灾损失量化的有效手段。为满足城市洪涝日益严峻的风险管理需求,亟需缺灾情资料城市的洪灾损失定量评估方法。提出了"因子变异-动态比拟-目标驱动-情景拟合"的缺灾情资料洪灾损失率函数构建方法:借鉴等比例替代思想,采用多引用对象和多特征指标构建变异比拟因子;建立以变差系数最小为目标的动态比拟方法,形成移植样本矩阵;以Beta分布概率最大为驱动目标,确定水深-损失率拟合序列;设置多拟合情景,以拟合相关系数最大为准则,优选洪灾损失率函数。以郑州市为例,模拟4种土地利用类型的洪灾损失率函数,结果表明,本文提出的缺资料城市洪灾损失率函数构建方法可行,特征组合指标呈现动态变化性,多种函数组合拟合效果最优。  相似文献   

12.
Green infrastructure (GI)-based approaches to urban drainage such as sustainable urban drainage systems (SUDS) could provide Sub-Saharan cities with an opportunity to address projected climate change impacts and existing deficits in their drainage infrastructure, even more so due to the synergies between an enhanced green infrastructure stock and sustainable urban development. The objective of this paper was to assess the theoretical value of using green infrastructure for stormwater management as an alternative and supplement to conventional pipe-based stormwater management systems. A SWOT analysis is performed to assess the potential that SUDS hold if adopted and implemented in Sub-Saharan cities. This analysis is based on a review of sustainable stormwater management as well as urban planning and governance literature. Results show that despite seemingly significant barriers to the adoption of SUDS in Sub-Saharan cities such as low prioritization on the urban agenda and lack of data among others, the concept may hold valuable potential for flood risk reduction, even more so due to its multi-functionality and synergies with urban agriculture, amenity and water supply. In the light of the existing threats and weaknesses, it is recommended that GI-based SUDS may be best approached initially as experiments at a local community scale.  相似文献   

13.
De-industrialisation triggered economic, spatial and environmental changes in cities. Therefore, this study identifies whether there has been a reorientation of spatial development in post-industrial cities towards the creation of green spaces. The aim of the study is to analyse and evaluate the transformation of green spaces in 32 major cities in Poland, including 12 post-industrial cities. Data sources were vector land cover data models from the Urban Atlas for 2006 and 2018, administrative boundaries from the National Boundary Register and building layers from the Topographic Objects Database. The research procedure was carried out using the GIS environment, through spatial analysis, geoprocessing algorithms, and spatial statistics. The results have shown that post-industrial cities do not develop their urban resilience based on the expansion of green spaces and, consequently, do not build green urban resilience. In addition, the research has proven that the greatest loss of green spaces is noticeable in parts of post-industrial cities with medium and high development intensity, where there is an intensification of construction activity. The dominant direction of the transformation of green spaces has been the conversion of agricultural areas into green spaces (87.79%). In contrast, the main direction of loss in green space has been the creation of new industrial units (24.80%) and the expansion of the urban fabric (23.53%). The article is original due to the fact that there is a gap in the literature regarding the study of green spaces in post-industrial cities with regard to the concept of green urban resilience.  相似文献   

14.
中国地级及以上城市紧凑度的综合测度及其空间关联分析   总被引:2,自引:0,他引:2  
潘竟虎  文岩 《冰川冻土》2013,35(1):233-239
从经济紧凑度、 土地利用紧凑度、 人口紧凑度和基础设施紧凑度等方面, 构建城市紧凑度的综合测度模型. 运用主成分分析法, 对2009年中国287个地级及以上城市紧凑度及其空间溢出效应进行综合测度. 结果表明: 紧凑度大致以"塔河-凭祥"一线为界, 以东区域的城市紧凑度水平较高, 以西的地区城市紧凑度水平低. 紧凑度Moran's I高值区连片集中在珠三角和长三角两个区域, 中心城市紧凑度的带动性和辐射性较强. 紧凑度呈现明显的热点-次热点-次冷点-冷点自东向西带状分布的格局. 经济发展、 土地利用结构和人口密度是目前中国地级以上城市紧凑度的重要决定因素, 城市土地利用因子表现相对较均衡, 而经济发展和人口密度两个主因子则表现出较强的不均衡性.  相似文献   

15.
Identifying urban flooding risk hotspots is one of the first steps in an integrated methodology for urban flood risk assessment and mitigation. This work employs three GIS-based frameworks for identifying urban flooding risk hotspots for residential buildings and urban corridors. This is done by overlaying a map of potentially flood-prone areas [estimated through the topographic wetness index (TWI)], a map of residential areas and urban corridors [extracted from a city-wide assessment of urban morphology types (UMT)], and a geo-spatial census dataset. A maximum likelihood method (MLE) is employed for estimating the threshold used for identifying the flood-prone areas (the TWI threshold) based on the inundation profiles calculated for various return periods within a given spatial window. Furthermore, Bayesian parameter estimation is employed in order to estimate the TWI threshold based on inundation profiles calculated for more than one spatial window. For different statistics of the TWI threshold (e.g. MLE estimate, 16th percentile, 50th percentile), the map of the potentially flood-prone areas is overlaid with the map of urban morphology units, identified as residential and urban corridors, in order to delineate the urban hotspots for both UMT. Moreover, information related to population density is integrated by overlaying geo-spatial census datasets in order to estimate the number of people affected by flooding. Differences in exposure characteristics have been assessed for a range of different residential types. As a demonstration, urban flooding risk hotspots are delineated for different percentiles of the TWI value for the city of Addis Ababa, Ethiopia.  相似文献   

16.
流域绿水研究的关键科学问题   总被引:5,自引:0,他引:5  
阐述了开展流域绿水研究的重要意义,分析了流域绿水研究的关键科学问题:①绿水量的测算方法与尺度转换;②流域绿水流的形成、转化及其生态水文响应机理;③流域绿水资源评价与管理。指出流域水资源评价与管理要以降水为基本水资源,综合考虑蓝水和绿水两部分,协调流域上、中、下游生态、生产和生活用水,充分开发利用非生产性绿水资源,平衡自然生态和人类用水。  相似文献   

17.
魏平  谢红彬  罗琳 《江苏地质》2023,47(1):73-83
资源型城市的粗放发展模式已不能适应当前城市绿色发展的要求,矿业废弃地严重阻碍了资源型城市的转型发展进程,如何对矿业废弃地进行合理再利用成为资源型城市转型亟待解决的问题。以我国262个资源型城市为案例地,筛选出117个矿业废弃地改造项目。根据矿区的内源性因素,划分出地表形态、分布区位、矿产类型3大类别,并剖析各个类别的特点;基于生态-经济-社会效益视角,归纳出7类再利用模式和10种改造方向;综合考虑战略任务、发展需求及再利用目标3方面的因素,提出矿业废弃地综合再利用思路。  相似文献   

18.
李晓虎  陈军伟  曾亮 《山东地质》2011,(5):52-53,57
全面分析了当前临沂市建设用地利用中存在的主要问题和制约因素,结合临沂市作为全省"两型"社会建设改革试点城市这一背景,借鉴国内外土地节约集约利用方面好的做法,提出通过规划计划、城乡统筹、机制创新、舆论宣传4个方面共同推进,走出一条临沂特色的土地节约集约新路子。  相似文献   

19.
We have systematized the effects associated with climate change on urban spaces in Chile reported between 2000 and 2012. The method was based on a review of scientific articles in three databases (Scopus, Web of Knowledge and Scielo) using 32 keywords. Only 14 research papers were found related to climate change in urban spaces, most of which were case studies focused on the capital, Santiago. The main effects on urban spaces were found in four areas: (1) increase in temperature (heat islands, heat waves), (2) health problems in vulnerable populations (cardiac complications, heat stroke, and respiratory diseases), (3) increased demand for water, and (4) damage to the urban infrastructure with resulting risk to the population. In these circumstances the following measures are needed: (1) effective incorporation of the potential impacts of climate change into territorial planning instruments, (2) increased green areas to mitigate the impact of heat waves, (3) limiting of housing or public services in areas at risk, (4) encouraging the design of adaptation plans by involving the vulnerable population, and (5) implementing water conservation measures. We conclude that climate change is causing effects in urban areas that should be considered in the design and expansion of cities.  相似文献   

20.

It is axiomatically true that urbanization in India's metropolises and large cities has been exacerbated since the beginning of the millennium, consuming the natural and semi-natural ecosystem on the outskirts of the city, resulting in a zone with a distinct climate known as urban climate. Such a climate—the result of a built-up environment is distinctly different from the natural climate as the paved surface and concrete skyscrapers not only destroy the natural ecosystem, it peculiarly induce a different kind of insolation, cooling and air drainage were lacking in green space, water bodies and open space cannot accommodate with environmental rhythm properly, resulting into the accumulation of heat, ecological derangement of subsurface soil which can easily be predicted by GIS analysis. This paper is an attempt to measure urban growth and its impact on the environment in the metropolitan city Kolkata. The use of satellite data and GIS techniques to detect urban expansion is a highly scientific strategy. Using geospatial techniques, the current study attempts to examine major urban changes in Kolkata and its surroundings from 1988 to 2021. Landsat 5 TM and Landsat 8 OLI temporal data are used to identify land-use change through unsupervised classification; Spectral Radiance Model and Split Window Algorithm method are used for identifying land surface temperature change. SRTM DEM (30 m) has been used to identify flood risk zones and several spectral indices like Normalized Difference Vegetation Index and Modified Normalized Difference Water Index are a further extension for environmental assessment. By all such suitable methods, a clearer change in an urban environment is detected within the period of 33 years (1988–2021). The result shows that the population changes, vegetation cover and built-up area, and accessibility are at a rapid rate. These changes are causing major environmental degradation in the city. The classification result indicates that appropriate land use planning and environmental monitoring are required for the long-term exploitation of these resources.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号