首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solar soft X-ray (XUV) radiation is important for upper atmosphere studies as it is one of the primary energy inputs and is highly variable. The XUV Photometer System (XPS) aboard the Solar Radiation and Climate Experiment (SORCE) has been measuring the solar XUV irradiance since March 2003 with a time cadence of 10 s and with about 70% duty cycle. The XPS measurements are between 0.1 and 34 nm and additionally the bright hydrogen emission at 121.6 nm. The XUV radiation varies by a factor of ∼2 with a period of ∼27 days that is due to the modulation of the active regions on the rotating Sun. The SORCE mission has observed over 20 solar rotations during the declining phase of solar cycle 23. The solar XUV irradiance also varies by more than a factor of 10 during the large X-class flares observed during the May–June 2003, October–November 2003, and July 2004 solar storm periods. There were 7 large X-class flares during the May–June 2003 storm period, 11 X-class flares during the October–November 2003 storm period, and 6 X-class flares during the July 2004 storm period. The X28 flare on 4 November 2003 is the largest flare since GOES began its solar X-ray measurements in 1976. The XUV variations during the X-class flares are as large as the expected solar cycle variations.  相似文献   

2.
1 IntroductionSolarflaresreflecttheenergeticsofcorrespondingmagneticfields.Researchingthesolarflareparametersin 1 1 - yearsolarcyclescouldthrowlightontheenergeticsofmagneticstructuresformingthebasisofthechromosphericandcoronalactivity .Thevariabilityofthe…  相似文献   

3.
In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemispheres of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of the descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to the previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997–2000). The dominance of northern hemisphere shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.  相似文献   

4.
NOAA active region 6659, during its June 1991 transit across the solar disk, showed highly sheared vector magnetic field structures and produced numerous powerful flares, including five white-light flares. Photospheric vector magnetograms of this active region were obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. After the resolution of the 180° ambiguity of the transverse magnetic field and transformation of off-center vector magnetograms to the heliographic plane, we have determined the photospheric vertical current density and discussed the relationship with powerful flares. The following results were obtained: (a) The powerful 3B/X12 flare on June 9, 1991 was triggered by the interaction between the large-scale electric current system and magnetic flux of opposite polarity. (b) The kernels of the powerful Hβ flare (sites of the white-light flare) were close to the peaks of the vertical electric current density. (c) Some small-scale structures of the vertical current relative to the magnetic islands of opposite polarity have not been found. This probably implies that the electric current is not always parallel to the magnetic field in solar active regions.  相似文献   

5.
The NOAA listings of solar flares in cycles 21?–?24, including the GOES soft X-ray magnitudes, enable a simple determination of the number of flares each flaring active region produces over its lifetime. We have studied this measure of flare productivity over the interval 1975?–?2012. The annual averages of flare productivity remained approximately constant during cycles 21 and 22, at about two reported M- or X-flares per region, but then increased significantly in the declining phase of cycle 23 (the years 2004?–?2005). We have confirmed this by using the independent RHESSI flare catalog to check the NOAA events listings where possible. We note that this measure of solar activity does not correlate with the solar cycle. The anomalous peak in flare productivity immediately preceded the long solar minimum between cycles 23 and 24.  相似文献   

6.
Magnetic field structures of Hα flares associated with meter-wave type III bursts during periods of low solar activity in 1975 – 1977 and 1985 – 1987 were investigated. In a statistical analysis it was confirmed that the association rate depends less on flare importance than on brightness. For subflares (95% of the sample), the location of the Hα flare in the bipolar pattern turned out to be crucial for the association rate. It is almost one order of magnitude larger for flares occurring at the border of the active regions, compared to flares located inside the general bipolar pattern. For selected typical examples of flares, extrapolations of the measured magnetic fields were performed. By matching Hα filtergrams and calculated 3-D structures it was found that the positions at the border where the flares associated with type III bursts occurred were close to open field lines extending into the corona. In most investigated cases intrusions of parasitic polarity were found in the vicinity of the flare locations. The extrapolations showed that subflares located inside the bipolar pattern but have not been associated with type III bursts were covered by dense arcades of magnetic loops.  相似文献   

7.
In the current solar cycle, the concentration of flare activity peaked during the period from October 19 to November 5, 2003, 3.5 years after the maximum point of the current solar-activity cycle. During this time, 56 high-(16) and medium-class flares occurred on the Sun, including 11 X flares. The flux of every such flare exceeded by a factor of 30 to 600 the 1–8 Å soft X-ray background flux of the entire Sun during flare-free periods. The disturbances caused by these flares produced six major S2-to S4-level proton events and four G1-to G5-class magnetic storms in the Earth’s space environment. Among the solar events observed were the most powerful X-ray flare of the current solar cycle, the eighth solar proton event in terms of particle flux during the entire history of observations, and the seventh magnetic storm in terms of Ap index. The most powerful flare resulted in the fastest coronal mass ejection during the current solar cycle with the solar plasma moving through interplanetary space at a velocity of 106 km/s, which is about four times higher than the average velocity. Severe magnetic storms during the period from September 29 through October 3 posed a lot of problems for research and technological satellites (Advanced Composition Explorer (ACE), Aqua, Chandra, Chips, Cluster, Geostationary Operational Environmental Satellites (GOES) 9, 10, and 12, etc.) and spacecraft in interplanetary space (Mars Explorer Rover and Microwave Anisotropy Probe). The Advanced Earth Observing Satellite 2 (ADEOS 2), a Japanese satellite for monitoring the Earth’s environment, was disabled at the time of the arrival of the powerful interplanetary shock from the superflare of October 28, 2003. During this period, the ISS astronauts were forced to escape into the aft part of the station five times, which ensured the strongest protection against radiation. This paper is dedicated to the study of the solar situation and individual flare events.  相似文献   

8.
Time series of daily numbers of solar Hα flares from 1955 to 1997 are studied by means of wavelet power spectra with regard to predominant periods in the range of ∼ 24 days (synodic). A 24-day period was first reported by Bai (1987) for the occurrence rate of hard X-ray flares during 1980–1985. Considering the northern and southern hemisphere separately, we find that the 24-day period is not an isolated phenomenon but occurs in each of the four solar cycles investigated (No. 19–22). The 24-day period can be established also in the occurrence rate of subflares but occurs more prominently in major flares (importance classes ≥ 1). A comparative analysis of magnetically classified active regions subdivided into magnetically complex (i.e., including a γ and/or δ configuration) and non-complex (α, β) reveals a significant relation between the appearance of the 24-day period in Hα flares and magnetically complex sunspot groups, whereas it cannot be established for non-complex groups. It is suggested that the 24-day period in solar flare occurrence is related to a periodic emergence of new magnetic flux rather than to the surface rotation of sunspots.  相似文献   

9.
During two extreme bursts of solar activity in March–April 2001 and October–November 2003, the ground-based neutron monitor network recorded a series of outstanding events distinguished by their magnitude and unusual peculiarities. The important changes that lead to increased activity initiated not with the sunspot appearance, but with the large-scale solar magnetic field reconfiguration. A series of strong and moderate magnetic storms and powerful proton events (including ground-level enhancements, GLE) were registered during these periods. The largest and most productive in the 23rd solar cycle, active region 486, generated a significant series of solar flares among which the 4 November 2003 flare (X28/3B) was the most powerful X-ray solar event ever observed. The fastest arrival of the interplanetary disturbance from the Sun (after August 1972) and the highest solar wind velocity and IMF intensity were recorded during these events. Within 1 week, three GLEs of solar cosmic rays were registered by the neutron monitor network (28 and 29 October and 2 November 2003). In this work, we perform a tentative analysis of a number of the effects seen in cosmic rays during these two periods, using the neutron monitor network and other relevant data.  相似文献   

10.
Historical records of sunspots and aurorae are valuable information to examine variations of solar activity and the terrestrial climate on a long-term scale. We have collected the historical records of Korea during the 11th–18th century. Through a power-spectrum analysis of these data, we have found solar activity cycles, which coincide with the Schwabe cycle and the Gleissberg cycle on short and long-term periods, respectively.  相似文献   

11.
We present study of relationship of GSXR flares with Hα flares, hard X-ray (HXR) bursts, microwave (MW) bursts at 15.4 GHz, type II/IV radio bursts, coronal mass ejections (CMEs), protons flares (>10 MeV) and ground level enhancement (GLE) events we find that about 85.7%, 93%, 97%, 69%, 60%, 11.1%, 79%, 46%, and 23%% GSXR flares are related/associated with observed Hα flares, HXR bursts, MW bursts at 15.4 GHz, type II radio bursts, type IV radio bursts, GLE events, CMEs, halo CMEs, and proton flares (>10 MeV), respectively. In the paper we have studied the onset time delay of GSXR flares with Hα flares, HXR, and MW bursts which shows the during majority GSXR flares SXR emissions start before the Hα, HXR and MW emissions, respectively while during 15–20% of GSXR flares the SXR emissions start after the onset of Hα, HXT and MW emissions, respectively indicating two types of solar flares. The, onset time interval between SXR emissions and type II radio bursts, type IV radio bursts, GLE events CMEs, halo CMEs, and protons flares are 1–15 min, 1–20 min, 21–30 min, 21–40 min, 21–40 min, and 1–4 hrs, respectively. Following the majority results we are of the view that the present investigations support solar flares models which suggest flare triggering first in the corona and then move to chromospheres/ photosphere to starts emissions in other wavelengths. The result of the present work is largely consistent with “big flare syndrome” proposed by Kahler (1982).  相似文献   

12.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

13.
This paper considers 3246 solar flares in the line Hα, which were accompanied by X-ray emission with a power f ≥ 5 × 10?6 Wm?2 in the solar cycle 22 (CR1797-CR1864). During 33 rotations, the specific power of X-ray emission of the flares increased monotonically by a factor of 4 from the cycle minimum up to its first maximum. The number of flares in each solar turnover rises non-monotonically and disproportionately to the relative number of sunspots. For the entire interval of time, one can identify several longitudinal intervals with increased flare activity. They exist during 5–10 rotations. The characteristics of the flares for 33 rotations in cycles 22 and 23 (CR1797-CR1961) are compared. It is concluded that the Sun is more active in cycle 22 than in cycle 23.  相似文献   

14.
Taeil Bai 《Solar physics》2006,234(2):409-419
In the declining phase of the current solar cycle (23), a large number of major flares were produced. In this cycle, the monthly sunspot number continuously remained below 100 since October 2002. However, during four epochs since then, flare activity became very high. Compared to this, each of cycles 21 and 22 produced only one epoch of high activity in the declining phase. In the declining phase of cycle 20, similarly to this cycle, there were four epochs of high flare activity. During 2003 and 2004, the distribution of flare sizes measured in GOES classes was much harder (i.e., proportionately more energetic flares) than during the maximum years. Such pronounced hardening of the size distribution was not observed in the previous cycles. It is of theoretical interest to understand why some cycles are very active in the declining phase, and the high level of activity in the declining phase has practical implications for planning solar observations and forecasting space weather.  相似文献   

15.
Ilya Yu Alekseev 《Solar physics》2004,224(1-2):187-194
We present the first results of searching for stellar cycles by analysis of stellar spottedness using an algorithm developed at the Crimean Astrophysical Observatory. For more than 35 red spotted stars, we find ten targets which demonstrate cyclic variations of average latitudes and total areas of starspots. Activity cycles detected by this method have a typical cycle length about 4–15 years which are analogous to the 11-year solar Schwabe cycle. Most of the program stars demonstrate a rough analogue with the solar butterfly diagram. They show a tendency for the average starspot latitude lowering when the total spot area grows. At the same time these stars show variations of stellar photometric period (which is traced by starspots) with the starspot latitudinal drift analogously to the solar differential rotation effect. We suspect that the starspot latitudinal drift rate and the differential rotation gradient depend on the stellar spectral type.  相似文献   

16.
Designing a statistical solar flare forecasting technique can benefit greatly from knowledge of the flare frequency of occurrence with respect to sunspot groups. This study analyzed sunspot groups and Hα and X-ray flares reported for the period 1997 – 2007. Annual catalogs were constructed, listing the days that numbered sunspot groups were observed (designated sunspot group-days, SSG-Ds) and for each day a record for each associated Hα flare of importance category one or greater and normal or bright brightness and for each X-ray flare of intensity C 5 or higher. The catalogs were then analyzed to produce frequency distributions of SSG-Ds by year, sunspot group class, likelihood of producing at least one flare overall and by sunspot group class, and frequency of occurrence of numbers of flares per day and flare intensity category. Only 3% of SSG-Ds produced a substantial Hα flare and 7% had a significant X-ray flare. We found that mature, complex sunspot groups were more likely than simple sunspot groups to produce a flare, but the latter were more prevalent than the former. More than half of the SSG-Ds with flares had a maximum intensity flare greater than the lowest category (C-class of intensity five and higher). The fact that certain sunspot group classes had flaring probabilities significantly higher than the combined probabilities of the intensity categories when all SSG-Ds were considered suggest that it might be best to first predict the flaring probability. For sunspot groups found likely to flare, a separate diagnosis of maximum flare intensity category appears feasible.  相似文献   

17.
Solar cycle distribution of great geomagnetic storms   总被引:1,自引:0,他引:1  
The distribution properties of great geomagnetic storms (Dst≤−200 nT) and super geomagnetic storms (Dst≤−300 nT) across the solar cycles (19–23) are investigated. The results show that 73.2% of the great geomagnetic storms took place in the descending phase of the solar cycles. 72.7% of super geomagnetic storms occurred in the descending phase of the solar cycles. About 83% of the great geomagnetic storms appeared during the period from the two years before solar cycle peak and the three years after solar cycle peak time. 90.9% of the super geomagnetic storms appeared between the two years before solar cycle peak and the three years after solar cycle peak. When a solar cycle is very strong, the phenomenon that great geomagnetic storms concentrated during the period from the two years before the solar cycle peak time to the three years after the solar cycle peak time is very prominent. The launch time of space science satellite is suggested according to the distribution properties of great geomagnetic storms and super geomagnetic storms in solar cycles.  相似文献   

18.
“TOY” Dynamo to Describe the Long-Term Solar Activity Cycles   总被引:1,自引:0,他引:1  
D. Volobuev 《Solar physics》2006,238(2):421-430
Secular variations of solar activity (Gleissberg and Suess cycles) have approximately 80 – 130 and 200 year periods. They are manifested in both observed and proxy data. Here, we show that the basic dynamic features of the Schwabe cycle (asymmetry of its growth and decay phases) and secular cycles (multi-frequency structure and irregular Grand-extremes), as well as a connection between them, can be described by parameter tuning of the electromechanical “toy” dynamo system which has been widely used to model the inversions of the geomagnetic field. An amplitude-frequency diagram for the model magnetic flux has the same shape as the directly observed and reconstructed sunspot area indices. An erratum to this article is available at .  相似文献   

19.
Yūki Kubo 《Solar physics》2008,248(1):85-98
This article discusses statistical models for the solar flare interval distribution in individual active regions. We analyzed solar flare data in 55 active regions that are listed in the Geosynchronous Operational Environmental Satellite (GOES) soft X-ray flare catalog for the years from 1981 to 2005. We discuss some problems with a conventional procedure to derive probability density functions from any data set and propose a new procedure, which uses the maximum likelihood method and Akaike Information Criterion (AIC) to objectively compare some competing probability density functions. Previous studies of the solar flare interval distribution in individual active regions only dealt with constant or time-dependent Poisson process models, and no other models were discussed. We examine three models – exponential, lognormal, and inverse Gaussian – as competing models for probability density functions in this study. We found that lognormal and inverse Gaussian models are more likely models than the exponential model for the solar flare interval distribution in individual active regions. The possible solar flare mechanisms for the distribution models are briefly mentioned. We also briefly investigated the time dependence of probability density functions of the solar flare interval distribution and found that some active regions show time dependence for lognormal and inverse Gaussian distribution functions. The results suggest that solar flares do not occur randomly in time; rather, solar flare intervals appear to be regulated by solar flare mechanisms. Determining a solar flare interval distribution is an essential step in probabilistic solar flare forecasting methods in space weather research. We briefly mention a probabilistic solar flare forecasting method as an application of a solar flare interval distribution analysis. The application of our distribution analysis to a probabilistic solar flare forecasting method is one of the main objectives of this study.  相似文献   

20.
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号