首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Blind marine seismic deconvolution using statistical MCMC methods   总被引:1,自引:0,他引:1  
In order to improve the resolution of seismic images, a blind deconvolution of seismic traces is necessary, since the source wavelet is not known and cannot be considered as a stationary signal. The reflectivity sequence is modeled as a Gaussian mixture, depending on three parameters (high and low reflector variances and reflector density), on the wavelet impulse response, and on the observation noise variance. These parameters are unknown and must be estimated from the recorded trace, which is the reflectivity convolved with the wavelet, plus noise. Two methods are compared in this paper for the parameter estimation. Since we are considering an incomplete data problem, we first consider maximum likelihood estimation by means of a stochastic expectation maximization (SEM) method. Alternatively, proper prior distributions can be specified for all unknown quantities. Then, a Bayesian strategy is applied, based on a Monte Carlo Markov Chain (MCMC) method. Having estimated the parameters, one can proceed to the deconvolution. A maximum posterior mode (MPM) criterion is optimized by means of an MCMC method. The deconvolution capability of these procedures is checked first on synthetic signals and then on the seismic data of the IFREMER ESSR4 campaign, where the wavelet duration blurs the reflectivity, and on the SMAVH high-resolution marine seismic data.  相似文献   

2.
李晔 《海洋工程》2016,34(5):131-136
由于海洋平台结构长期处于恶劣的海洋环境中,并受到各种载荷的交互作用,结构容易产生各种形式的损伤。因此,对海洋平台进行实时监测有着十分重要的现实意义。以单筒简易导管架平台为例,主要在结构损伤的判定和定位两方面对海洋平台的实时结构健康监测进行研究,结果表明通过对结构响应信号进行小波分析,小波变换系数和小波包能量分布可以很好地定义损伤识别指标。  相似文献   

3.
In this study, the seismic response control of offshore platform structures with Shape Memory Alloy (SMA) dampers is investigated. A new SMA damper and its restoring force medel are introduced for the calculation of seismic response reduction. Based on an actual platform structure and its mechanical medel, the parameters which may affect the rate of shock absorption are analyzed, such as the number, position and characteristics of the SMA dampers and the condition of the site where the platform is located. The results show that the SMA damper is an effective control device for offshore platforms and satisfactory control can be achieved by proper selection of the parameters.  相似文献   

4.
探讨了应用离散元分析方法求解地震荷载下沉箱和背后填土大变形问题的可能性,开发了能描述沉箱的平面形状及沉箱与土体摩擦特性的矩形单元。并通过简单实例分析了地震时沉箱码头的变形,再现了沉箱码头地震灾害的发生过程,为沉箱在地震情况下的大变形分析提供了一种新途径。比较了两种沉箱模型对分析结果的影响,提出了相应的方法。  相似文献   

5.
小波变换在分析非平稳信号方面较傅立叶变换更有效,为了检测出海洋平台结构中裂缝或因刚度降低引起的损伤,对海洋平台的响应信号进行离散小波变换,通过分析变换后的信号是否有突变现象判断结构是否出现损伤,并结合模态应变能法实现了对结构损伤的定位,探讨了传感器位置对识别效果的影响。  相似文献   

6.
GAO  Yufeng 《中国海洋工程》2001,(1):107-116
For evaluation of the permanent deformation of a sea embankment under stochastic earthquake excitation, a robust dynamic risk analytical method is presented based on conventional permanent deformation analysis and stochastic seismic response analysis. This method can predict not only the mean value of maximum permanent deformation but also the reliability corresponding to different deformation control standards. The earthquake motion is modelled as a stationary Gaussian filtered white noise random process. The predicted average maximum horizontal permanent displacement is in agreement with the conventional result. Further studied are the reliability of permanent deformation due to stochastic wave details at one seismic motion level and the risk of permanent deformation due to stochastic seismic strength, i. e., the maximum acceleration in a long period. Therefore, it is possible to make the optimal design in terms of safety and economy according to the importance of a sea embankment. It is suggested tha  相似文献   

7.
The source mechanism of the tsunami generated by the earthquake of 17 October, 1966 off the coast of central Peru was inferred by studying the seismic and oceanic phenomena associated with this event. The seismic mechanism was deduced from geologic structure, seismic intensities, energy releases, spatial distribution of aftershocks, and fault-plane solutions. Using this information and empirical relationships of seismic parameters, the fault length, azimuthal orientation of the tsunamigenic area, and initial tsunami height, were obtained. From the tsunami arrival times at selected stations and from a reverse wave-refraction technique, the limits of the tsunami-generating area were estimated. Using these source dimensions, an estimate of the tsunami energy was obtained. The spatial distribution of aftershocks associated with the main earthquake and the earthquake strain-release pattern correlated well with known seismotectonic trends and the seismic-velocity structure anomalies which are characteristic of thrust fault systems at continent-ocean boundaries. The investigation revealed that the tsunamigenic area was on the continental shelf off Peru, northwest of Lima, in the western part of an active seismic belt between the Andean Mountain block and the Peru-Chile trench. This area is considered to be one of three distinct seismic zones in the Peruvian upper mantle and has been responsible for a number of tsunamigenic earthquakes within recorded history. The aftershock distribution and strain-release patterns suggest that the earthquake fault was a seaward extension of a fault system which has a pronounced surface expression in the Tertiary formations of the area near Ancon, Peru. The limits of the tectonic displacements and the tsunami-generating area were determined by a reverse wave-refraction method, refracting waves from Chimbote, Callao-Lima, San Juan, and Honolulu. The investigation revealed that the tsunami was generated by displacements of crustal blocks with a total area of 13,000 sq. km. Seismic and water motion data indicated that the uplifted portion of the crustal block was on the continental side of the rift. The energy of the main earthquake was estimated to be 1.122·1023 ergs. The energy of the aftershocks was estimated to be 2.357·1020 ergs. The tsunami energy was calculated to be 6.8·1019 ergs, or 11,650 of the earthquake energy.  相似文献   

8.
本文提出的主能量脉冲反褶积方法,旨在保持原反褶积相位特性的同时将有效频带拓宽为期望输出的主能量谱,以期获得更为可靠的地震分辨率。其首先根据地震波的有效频带范围设计出期望输出的主能量谱,然后通过主能量谱滤波获得主能量信号,并以其为输入求取初始的反褶积因子,再在保持初始反褶积因子相位特性的前提下以主能量谱为期望的振幅谱,求取1个优化的反褶积因子,最后即可通过褶积运算获得期望输出的地震信号。  相似文献   

9.
抑制涡激振动的螺旋列板设计参数研究   总被引:1,自引:0,他引:1  
基于水池模型实验结果和工程设计经验,结合国内外试验数据,着重分析用于抑制海洋立管涡激振动的螺旋列板几何参数(鳍高和螺距)及覆盖率对立管涡激振动的影响;并对水动力直径和水动力系数的选取对预报涡激振动的影响进行了分析,进而提出了适合于海洋立管工程应用的螺旋列板几何和设计参数选取的建议,为螺旋列板工程应用、海洋立管强度和疲劳设计提供参考。  相似文献   

10.
A mathematical equation for vibration of submerged floating tunnel tether under the effects of earthquake and parametric excitation is presented.Multi-step Galerkin method is used to simplify this equation and the fourth-order Runge-Kuta integration method is used for numerical analysis.Finally,vibration response of submerged floating tunnel tether subjected to earthquake and parametric excitation is analyzed in a few numerical examples.The results show that the vibration response of tether varies with the seismic wave type;the steady maximum mid-span displacement of tether subjected to seismic wave keeps constant when parametric resonance takes place;the transient maximum mid-span displacement of tether is related to the peak value of input seismic wave acceleration.  相似文献   

11.
实现地震道零相位化的子波相位谱消去法   总被引:2,自引:0,他引:2  
子波相位谱消去法是通过话因式分解并以最大的方差模为准则求得子波相位港,然后将其从地震造的相位谱中消去。与常相住校正方法相比,该方法不要求于波各分频的初相位角为常数。模型实验表明,该方法具有良好的稳定性和对主频变化的适应性,首尾于波的主频相差30Hz时仍能得出很好的结果,这就使得我们对地震道可一次进行全道处理,而不必进行分段处理;对于最小相位地震道及接近最小相位的混合相位地震道,该方法具有较好的容噪能力。对于最大相位地震道及接近最大相让的混合相位地震道,当记录的信噪比较高时也有较好的效果。  相似文献   

12.
海洋平台结构抗震可靠性时程分析方法   总被引:3,自引:0,他引:3  
将地震运动视为随机过程,建立海洋平台结构在地震作用任一时刻基于剪切变形控制的极限状态方程,应用JC法计算海洋平台结构在地震作用任一时刻的可靠度,得到海洋平台结构抗震可靠度的时程曲线。该方法可满足工程设计的要求,便于工程应用。  相似文献   

13.
1 .IntroductionInthe whole service period of the platforms ,some damage is unavoidable due to the corrosion,impact ,fatigue and so on.The damage whould cause the structures’ultimate capacity and safety de-crease .Presently,it is generally acceptedthat the detection of damage involes considerable statisticaluncertainties,thus lot of efforts is made for the damage probalility model ,for example Song and Lu(1996) usedthefuzzy-settheoryto estimatethe humanerrorsthroughthe definitionof inspection…  相似文献   

14.
Corrosion of offshore platforms is inevitable. In an ocean corrosion environment, the strength of a platform is weakened greatly. When simultaneously subjected to earthquakes or other extreme loads, the ultimate bearing capacity of the corroded platform is dramatically reduced, resulting in compounded damage from both corrosion and earthquake. Thus, the influence of corrosion cannot be neglected in the seismic performance investigation of platforms. The commonly used corrosion model in platform design is uniform corrosion, and the corrosion rate rule for any parts or zones in a platform is the same. In real cases, however, there are significant differences between the corrosion characteristics in different parts of a platform. Based on theoretical aspects and measured data, a zonal time-variant corrosion model of a platform is developed for a seismic collapse performance investigation. The pushover and incremental dynamic analysis (IDA) methods are adopted here to calculate the collapse margin ratio (CMR), there serve strength ratio (RSR) and ductility coefficient (μ) that are frequently used for the safety reserve evaluation of a platform. The failure reason and collapse probability of platforms considering different service periods are compared. The most prominent feature of the proposed time-variant zonal corrosion model is to capture potential switch of weak location and resulting failure path of corroded jacket offshore platforms although the proposed model needs further calibration by more reliable in-field measured data. As expected, corrosion can definitely cause a reduction in earthquake resistance of a jacket offshore platform, as well as ultimate deformability. The coupled effect between the time-variant vibration properties of the platform and the spectral characteristics of selected motions, the collapse-level spectral acceleration (SA) does not always decrease with increasing corrosion degree. The curves corresponding to normalized CMR and RSR agree very well with each other in the early corrosion development stage and service period beyond 30 years. Some distinct differences can be found during the two stages, with the greatest difference up to 10% for the example platform.  相似文献   

15.
Stochastic Response Analysis of Piled Offshore Platforms to Earthquake Load   总被引:1,自引:0,他引:1  
- In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to eqrthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.  相似文献   

16.
为更加合理地计算基于位移的高桩码头抗震设计动力放大系数,采用40组地震动记录研究了双向水平地震作用下的码头动力放大系数。研究表明,码头的偏心距和分段长度以及地震波的入射角度对动力放大系数影响较大,地震动强度和近断层效应的影响可近似予以忽略。基于对动力放大系数计算结果的统计分析,提出了相应的计算公式,并确定了动力放大系数的变异系数和概率分布。  相似文献   

17.
The authors deal with the computing seismic passive earth pressure acting on a vertical rigid wall. The wall is provided with a drainage system along soil-structure interface and retains the cohesionless backfill subjected to water seepage. A general solution for the seismic passive earth pressure is presented. The solution is based on Coulomb's theory wherein seismic forces are assumed to be pseudostatic. The solution considers the pore water pressures induced by water seepage and earthquake shaking. Some important parameters are included in the solution. The parameters are the soil effective internal friction angle, wall friction, soil unit weight, and horizontal and vertical seismic acceleration coefficients. The comparison of the total seismic passive earth pressure in horizontal direction from the present method with published works indicates that the present method may be reasonable. The variations of the passive earth pressure coefficient with the soil effective internal friction angle are investigated for different wall friction angles and seismic forces. The effect of the water seepage on the seismic passive earth pressure is also investigated.  相似文献   

18.
The distinguishing features of the seismicity throughout South Kamchatka and within the Avacha Bay seismic gap in the 20th century are considered. The evolution of the evaluation of the magnitudes of the strongest earthquakes for this gap from M = 7.25–7.5 in 1965–1980 to 7.75–8.0 after 1980 is discussed. On the basis of the method for studying the characteristic features of the seismicity within a seismic gap developed for the Central Kuriles, the seismicity of South Kamchatka is considered for depths of 0–100, 101–200, and more than 200 km according to the data from the New Catalog [6] for the period from 1901 to 1974 (M ≥ 6.1), the Special Catalog for North Eurasia [3] for the period from 1975 to 1993 (M ≥ 4.5), and additional data from the Kamchatka stations for the period from 1994 to 1997. It was found that the seismic process within the region of South Kamchatka is typical of the island arcs; i.e, most of the earthquakes considered and the maximum of the seismic energy released are concentrated in the lithosphere at depths of 0–100 km. The seismological situation in the zone of Avacha Bay is found to be similar to that within the second kind of the seismic gap during the precursory seismic quiescence of the 1978 Oaxac earthquake with M = 7.8 in Central Mexico. This allows us to consider the zone of Avacha Bay as a possible seismic gap of the second kind. Such a result can be considered as a suggestion of the possibility of the occurrence in Avacha Bay of an earthquake with M ~ 8 according to the long-term forecast for the region of the Kuriles and Kamchatka made by S.A. Fedotov.  相似文献   

19.
地震与波浪联合作用下海洋平台动力特性分析   总被引:1,自引:0,他引:1  
主要针对地震与波浪联合作用下空间导管架式海洋平台结构的动力响应特性进行研究。以春晓平台结构为例,利用ANSYS程序进行了动力响应的数值计算,分析中考虑了地震设防烈度、风浪条件及场地土类型等因素对结构响应的影响,并与地震单独作用下的结构响应进行了对比。分析结果表明,抗震设防烈度较低、中等及较大风浪条件下对海洋平台结构进行抗震分析时有必要考虑地震与波浪的联合作用。  相似文献   

20.
鉴于国内外海洋地震台网的缺乏, 本文介绍了一种面向全球海域应用的漂浮式海底地震接收系统(mobile earthquake recording in marine areas by independent divers, MERMAID)。针对潜浮式地震仪MERMAID浮标的研发过程, 建立了浮标的总体设计要求与典型工作循环流程, 设计了液压式浮力调节系统、机械结构等, 并对比分析了不同转速及负浮力下潜过程, 最后进行了实验室压力检测和千岛湖湖试。试验结果表明, 该浮标能在15MPa压力下保持良好的密封性与稳定性, 利用水听器可以有效地采集到天然地震纵波(P波), 同时计算各模块单个周期的能耗, 以验证设计指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号