首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

2.
The problem of improving the geoid from satellite altimetry is formulated and studied within the scope of geophysical fluid dynamics. The oceanic levelling is defined by analogy to the astrogeodetic levelling and it is used to determine the sea surface topography as a function of current velocity, atmospheric pressure and viscosity. Simulating strong currents like the Gulf Stream or the Kuroshio the numerical treatment of the oceanic levelling shows that the sea surface topography can come up to an order of magnitude of1–2 m, whereby the results depend on latitude and slightly on the actual pressure conditions.  相似文献   

3.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   

4.
利用多颗卫星的测高数据,经共线平均及交叉点平差,建立浙江深海海域2.5′×2.5′格网分辨率的平均海面高模型,在扣除海面地形影响后得到海域的大地水准面起伏,并与EGM2008所得计算结果进行对比;利用移去-恢复技术及SVR方法,联合验潮站GPS/水准数据与EGM2008大地水准面模型,计算浙江近岸海域大地水准面起伏;最终建立浙江海域2.5′×2.5′格网分辨率的大地水准面模型。  相似文献   

5.
We present a geoid solution for the Weddell Sea and adjacent continental Antarctic regions. There, a refined geoid is of interest, especially for oceanographic and glaciological applications. For example, to investigate the Weddell Gyre as a part of the Antarctic Circumpolar Current and, thus, of the global ocean circulation, the mean dynamic topography (MDT) is needed. These days, the marine gravity field can be inferred with high and homogeneous resolution from altimetric height profiles of the mean sea surface. However, in areas permanently covered by sea ice as well as in coastal regions, satellite altimetry features deficiencies. Focussing on the Weddell Sea, these aspects are investigated in detail. In these areas, ground-based data that have not been used for geoid computation so far provide additional information in comparison with the existing high-resolution global gravity field models such as EGM2008. The geoid computation is based on the remove–compute–restore approach making use of least-squares collocation. The residual geoid with respect to a release 4 GOCE model adds up to two meters and more in the near-coastal and continental areas of the Weddell Sea region, also in comparison with EGM2008. Consequently, the thus refined geoid serves to compute new estimates of the regional MDT and geostrophic currents.  相似文献   

6.
Ellipsoidal geoid computation   总被引:1,自引:1,他引:0  
Modern geoid computation uses a global gravity model, such as EGM96, as a third component in a remove–restore process. The classical approach uses only two: the reference ellipsoid and a geometrical model representing the topography. The rationale for all three components is reviewed, drawing attention to the much smaller precision now needed when transforming residual gravity anomalies. It is shown that all ellipsoidal effects needed for geoid computation with millimetric accuracy are automatically included provided that the free air anomaly and geoid are calculated correctly from the global model. Both must be consistent with an ellipsoidal Earth and with the treatment of observed gravity data. Further ellipsoidal corrections are then negligible. Precise formulae are developed for the geoid height and the free air anomaly using a global gravity model, given as spherical harmonic coefficients. Although only linear in the anomalous potential, these formulae are otherwise exact for an ellipsoidal reference Earth—they involve closed analytical functions of the eccentricity (and the Earths spin rate), rather than a truncated power series in e2. They are evaluated using EGM96 and give ellipsoidal corrections to the conventional free air anomaly ranging from –0.84 to +1.14 mGal, both extremes occurring in Tibet. The geoid error corresponding to these differences is dominated by longer wavelengths, so extrema occur elsewhere, rising to +766 mm south of India and falling to –594 mm over New Guinea. At short wavelengths, the difference between ellipsoidal corrections based only on EGM96 and those derived from detailed local gravity data for the North Sea geoid GEONZ97 has a standard deviation of only 3.3 mm. However, the long-wavelength components missed by the local computation reach 300 mm and have a significant slope. In Australia, for example, such a slope would amount to a 600-mm rise from Perth to Cairns.  相似文献   

7.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

8.
The method of analytical downward continuation has been used for solving Molodensky’s problem. This method can also be used to reduce the surface free air anomaly to the ellipsoid for the determination of the coefficients of the spherical harmonic expansion of the geopotential. In the reduction of airborne or satellite gradiometry data, if the sea level is chosen as reference surface, we will encounter the problem of the analytical downward continuation of the disturbing potential into the earth, too. The goal of this paper is to find out the topographic effect of solving Stoke’sboundary value problem (determination of the geoid) by using the method of analytical downward continuation. It is shown that the disturbing potential obtained by using the analytical downward continuation is different from the true disturbing potential on the sea level mostly by a −2πGρh 2/p. This correction is important and it is very easy to compute and add to the final results. A terrain effect (effect of the topography from the Bouguer plate) is found to be much smaller than the correction of the Bouguer plate and can be neglected in most cases. It is also shown that the geoid determined by using the Helmert’s second condensation (including the indirect effect) and using the analytical downward continuation procedure (including the topographic effect) are identical. They are different procedures and may be used in different environments, e.g., the analytical downward continuation procedure is also more convenient for processing the aerial gravity gradient data. A numerical test was completed in a rough mountain area, 35°<ϕ<38°, 240°<λ<243°. A digital height model in 30″×30″ point value was used. The test indicated that the terrain effect in the test area has theRMS value ±0.2−0.3 cm for geoid. The topographic effect on the deflections of the vertical is around1 arc second.  相似文献   

9.
Gravimetric geoid determination by Stokes formula requires that the effects of topographic masses be removed prior to Stokes integration. This step includes the direct topographic and the downward continuation (DWC) effects on gravity anomaly, and the computations yield the co-geoid height. By adding the effect of restoration of the topography, the indirect effect on the geoid, the geoid height is obtained. Unfortunately, the computations of all these topographic effects are hampered by the uncertainty of the density distribution of the topography. Usually the computations are limited to a constant topographic density, but recently the effects of lateral density variations have been studied for their direct and indirect effects on the geoid. It is emphasised that the DWC effect might also be significantly affected by a lateral density variation. However, instead of computing separate effects of lateral density variation for direct, DWC and indirect effects, it is shown in two independent ways that the total geoid effect due to the lateral density anomaly can be represented as a simple correction proportional to the lateral density anomaly and the elevation squared of the computation point. This simple formula stems from the fact that the significant long-wavelength contributions to the various topographic effects cancel in their sum. Assuming that the lateral density anomaly is within 20% of the standard topographic density, the derived formula implies that the total effect on the geoid is significant at the centimetre level for topographic elevations above 0.66 km. For elevations of 1000, 2000 and 5000 m the effect is within ± 2.2, ± 8.8 and ± 56.8 cm, respectively. For the elevation of Mt. Everest the effect is within ± 1.78 m.  相似文献   

10.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

11.
Geoid models from the new generation of satellite gravity missions, such as GRACE and GOCE, in combination with sea surface from satellite altimetry allow to obtain absolute dynamic ocean topography with rather high spatial resolution and accuracy. However, this implies combination of data with fundamentally different characteristics and different spatial resolutions. Spectral consistency would imply the removal of the short-scale features of the altimetric sea surface height by filtering, to provide altimetric data consistent with the resolution of the geoid field. The goal must be to lose as little as possible from the high precision of the altimetric signal. Using a one-dimensional example we show how the spectrum is changing when a function defined only on a limited domain (ocean in the real case) is extended or not as to cover the complete domain (the whole sphere in the real case). The results depend on the spectral characteristics of the altimetric signal and of the applied filter. Referring to the periodicity condition, as it is requested in the case of Fourier analysis, the action of the two classical filters (Ideal Low Pass and Gauss filter) and of two alternative procedures (wavelets and Slepian) is studied.  相似文献   

12.
利用卫星测高资料推求西北太平洋海域的海洋大地水准面   总被引:3,自引:0,他引:3  
李明  梁振英 《测绘学报》1997,26(4):344-351
本文根据卫星测高数据和海面动力地形资料,绘制了不相上下北太平洋海域局部大地水准面的精细结构图,对解决卫星测高技术中大地水准面积和海面地形的可分性问题作了初步尝试。  相似文献   

13.
邢乐林  李建成  刘晓玲 《测绘科学》2006,31(5):48-49,53
研究了利用沿轨大地水准面梯度数据计算海洋垂线偏差的最小二乘法,首先对ENVISAT测高数据进行各项地球物理改正得到近似测高大地水准面,然后计算沿轨大地水准面的梯度,接着用最小二乘法计算格网垂线偏差东西分量和南北分量的平均值。最后,用该方法计算了南中国海区域及其邻近海域(4°N~25°N,104°E~120°E)的5′×5′垂线偏差南北分量和东西分量,其精度优于7″,并与EGM96模型计算的垂线偏差值进行了比较,证明了该方法的有效性。  相似文献   

14.
 The topographic and atmospheric effects of gravimetric geoid determination by the modified Stokes formula, which combines terrestrial gravity and a global geopotential model, are presented. Special emphasis is given to the zero- and first-degree effects. The normal potential is defined in the traditional way, such that the disturbing potential in the exterior of the masses contains no zero- and first-degree harmonics. In contrast, it is shown that, as a result of the topographic masses, the gravimetric geoid includes such harmonics of the order of several centimetres. In addition, the atmosphere contributes with a zero-degree harmonic of magnitude within 1 cm. Received: 5 November 1999 / Accepted: 22 January 2001  相似文献   

15.
The topographic effects by Stokes formula are typically considered for a spherical approximation of sea level. For more precise determination of the geoid, sea level is better approximated by an ellipsoid, which justifies the consideration of the ellipsoidal corrections of topographic effects for improved geoid solutions. The aim of this study is to estimate the ellipsoidal effects of the combined topographic correction (direct plus indirect topographic effects) and the downward continuation effect. It is concluded that the ellipsoidal correction to the combined topographic effect on the geoid height is far less than 1 mm. On the contrary, the ellipsoidal correction to the effect of downward continuation of gravity anomaly to sea level may be significant at the 1-cm level in mountainous regions. Nevertheless, if Stokes formula is modified and the integration of gravity anomalies is limited to a cap of a few degrees radius around the computation point, nor this effect is likely to be significant.AcknowledgementsThe author is grateful for constructive remarks by J Ågren and the three reviewers.  相似文献   

16.
The northern European geoid: a case study on long-wavelength geoid errors   总被引:1,自引:1,他引:1  
 The long-wavelength geoid errors on large-scale geoid solutions, and the use of modified kernels to mitigate these effects, are studied. The geoid around the Nordic area, from Greenland to the Ural mountains, is considered. The effect of including additional gravity data around the Nordic/Baltic land area, originating from both marine, satellite and ground-based measurements, is studied. It is found that additional data appear to increase the noise level in computations, indicating the presence of systematic errors. Therefore, the Wong–Gore modification to the Stokes kernel is applied. This method of removing lower-order terms in the Stokes kernel appears to improve the geoid. The best fit to the global positioning system (GPS) leveling points is obtained with a degree of modification of approximately 30. In addition to the study of modification errors, the results of different methods of combining satellite altimetry gravity and other gravimetry are presented. They all gave comparable results, at the 6-cm level, when evaluated for the Nordic GPS networks. One dimensional (1-D) and 2-D fast Fourier transform (FFT) methods are also compared. It is shown that even though methods differ by up to 6 cm, the fit to the GPS is essentially the same. A surprising conclusion is that the addition of more data does not always produce a better geoid, illustrating the danger of systematic errors in data. Received: 4 July 2001 / Accepted: 21 February 2002  相似文献   

17.
 The analytical continuation of the surface gravity anomaly to sea level is a necessary correction in the application of Stokes' formula for geoid estimation. This process is frequently performed by the inversion of Poisson's integral formula for a sphere. Unfortunately, this integral equation corresponds to an improperly posed problem, and the solution is both numerically unstable, unless it is well smoothed, and tedious to compute. A solution that avoids the intermediate step of downward continuation of the gravity anomaly is presented. Instead the effect on the geoid as provided by Stokes' formula is studied directly. The practical solution is partly presented in terms of a truncated Taylor series and partly as a truncated series of spherical harmonics. Some simple numerical estimates show that the solution mostly meets the requests of a 1-cm geoid model, but the truncation error of the far zone must be studied more precisely for high altitudes of the computation point. In addition, it should be emphasized that the derived solution is more computer efficient than the detour by Poisson's integral. Received: 6 February 2002 / Accepted: 18 November 2002 Acknowledgements. Jonas ?gren carried out the numerical calculations and gave some critical and constructive remarks on a draft version of the paper. This support is cordially acknowledged. Also, the thorough work performed by one unknown reviewer is very much appreciated.  相似文献   

18.
Prior to Stokes integration, the gravitational effect of atmospheric masses must be removed from the gravity anomaly g. One theory for the atmospheric gravity effect on the geoid is the well-known International Association of Geodesy approach in connection with Stokes integral formula. Another strategy is the use of a spherical harmonic representation of the topography, i.e. the use of a global topography computed from a set of spherical harmonics. The latter strategy is improved to account for local information. A new formula is derived by combining the local contribution of the atmospheric effect computed from a detailed digital terrain model and the global contribution computed from a spherical harmonic model of the topography. The new formula is tested over Iran and the results are compared with corresponding results from the old formula which only uses the global information. The results show significant differences. The differences between the two formulas reach 17 cm in a test area in Iran.  相似文献   

19.
The strategy for the determination of a new local geoid in China is: (1) This task should be fulfilled in a short time as possible; (2) The new local geoid can be with different resolution and accuracy, which depend on the needs of the social and economical development in different regions; (3) The newly established height anomaly control network, i.e. a gridded GPS levelling network should combine as possible with the existing astro-gravimetric levelling network; (4) Global geopotential model, DTM and surface gravity data are used to densify the resolution of the local geoid with remove-restore technique. The accuracy and resolution possibly obtained nowadays within the capability of China are discussed. The required accuracies for GPS positioning, levelling and coordinate transformation are suggested.  相似文献   

20.
We present a combined approach for the realization of the (quasi-)geoid as a height reference surface and the vertical reference surface at sea (chart datum). This approach, specifically designed for shallow seas and coastal waters, provides the relation between the two vertical reference surfaces without gaps down to the coast. It uses a regional hydrodynamic model, which, after vertical referencing, provides water levels relative to a given (quasi-)geoid. Conversely, the hydrodynamic model is also used to realize a (quasi-)geoid by providing corrections to the dynamic sea surface topography, which are used to reduce radar altimeter-derived sea surface heights to the (quasi-)geoid. The coupled problem of vertically referencing the hydrodynamic model and computing the (quasi-)geoid is solved iteratively. After convergence of the iteration process, the vertically referenced hydrodynamic model is used to realize the chart datum. In this way, consistency between the chart datum and (quasi-)geoid is ensured. We demonstrate the feasibility and performance of this approach for the Dutch mainland and North Sea. We show that in the Dutch part of the North Sea, the differences between modeled and observed instantaneous and mean dynamic sea surface topography is 8–10 and 5.8 cm, respectively. On land, we show that the methodology provides a quasi-geoid which has a lower standard deviation (SD) than the European Gravimetric Geoid 2008 (EGG08) and the official Netherlands quasi-geoid NLGEO2004-grav when compared to GPS-levelling data. The root mean square at 81 GPS-levelling points is below 1.4 cm; no correction surface is needed. Finally, we show that the chart datum (lowest astronomical tide, LAT) agrees with the observed chart datum at 92 onshore tide gauges to within 21.5 cm (SD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号