首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiative control of surface temperature is a key characteristic of the martian environment and its low-density atmosphere. Here we show through meteorological modeling that surface temperature can be far from radiative equilibrium over numerous sloping terrains on Mars, where nighttime mesoscale katabatic winds impact the surface energy budget. Katabatic circulations induce both adiabatic atmospheric heating and enhancement of downward sensible heat flux, which then becomes comparable to radiative flux and acts to warm the ground. Through this mechanism, surface temperature can increase up to 20 K. One consequence is that warm signatures of surface temperature over slopes, observed through infrared spectrometry, cannot be systematically associated with contrasts of intrinsic soil thermal inertia. Apparent thermal inertia maps retrieved thus far possibly contain wind-induced structures. Another consequence is that surface temperature observations close to sloping terrains could allow the validation of model predictions for martian katabatic winds, provided contrasts in intrinsic thermal inertia can be ruled out. The thermal impact of winds is mostly discussed in this paper in the particular cases of Olympus Mons/Lycus Sulci and Terra Meridiani but is generally significant over any sloped terrains in low thermal inertia areas. It is even general enough to apply under daytime conditions, thereby providing a possible explanation for observed afternoon surface cooling, and to ice-covered terrains, thereby providing new insights on how winds could have shaped the present surface of Mars.  相似文献   

2.
Dunes have similar morphologies on the Earth and Mars. The main differences between Martian and terrestrial dunes are their size, which is larger on Mars, and their duration of formation, which is longer on Mars. As the characteristic time of Martian dunes is in the same order as that of the Martian climatic oscillations, Martian dunes could be recorders of past winds regimes and past climates. In order to test this hypothesis, we performed a morphological study of 550 dune fields with high resolution images and we inferred the directions of the dune formative winds from the orientation of the dune slip faces. Our study shows that 310 dune fields record one to four distinct wind directions with some geometric patterns that do not exist on the Earth such as barchans built by opposite wind directions coexisting in the same dune field. Our study demonstrates that the inferred formative wind directions are only partially in agreement with the current wind-patterns predicted by General Circulation Models (GCM). Several possible causes for the misalignment between dunes and GCM outputs are discussed: these include the local variation of the global circulation due to local topographic effects or the possibility that these dunes could be in a transient geometry or fossil. Such bedforms are considered indeed to be not in equilibrium with the present-day atmospheric conditions. This latter hypothesis is supported by the presence, in some ergs, of closely spaced dunes showing nearly opposite slip face orientations. Therefore, we propose that Martian dune fields are constituted, in some cases, by active and fossil dunes and therefore have the potential to preserve information on paleoclimates over extensive periods.  相似文献   

3.
We report results of the analysis of the data on global mapping of neutron fluxes from the Martian surface, which have been obtained during the first ten months of measurements carried out by the Russian high-energy neutron detector HEND mounted aboard the AmericanMars Odysseyorbiter. This analysis allowed us to separate regions where free water (in ice form) prevailed in the surface layer (with a thickness of up to 2 m) of the Martian ground from regions where physically and chemically bound ground water was most likely to be the dominant form of water. The global mapping of regions with increased ice content in the ground-surface layer revealed a direct correlation with regions of polygonal terrains morphologically similar to terrestrial polygonal forms of permafrost origin. The potential content of bound water forms in the ground of circumpolar areas of the planet is also estimated.  相似文献   

4.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

5.
A weighted least squares fit to the best available data on the Martian microwave spectrum indicates that the brightness temperature decreases from long to short wavelengths, rather than increasing as expected from the solution of the one-dimensional equation of heat conduction. Reasonable assumptions on the ratio of electrical to thermal skin depths, on internal heat sources, on ferromagnetic materials, on radiative conduction, on compaction with depth, and on surface rpughness all fail in reproducing the deduced spectrum. A thin near-surface layer of a material with high dielectric constant and high millimeter wave absorption is needed. Since Mars exhibits marked surface overturn, a condensible material, namely liquid water, seems indicated. A layer of liquid water some tens of microns thick, on the average, localized in the top few millimeters of a Martian epilith with refractive index ? 1.6 fits the microwave spectrum, and the infrared and radar data as well. The origin of such a layer of liquid water and its possible exobiological significance are discussed. The distribution of water should be nonuniform over the disk and may help explain discordant microwave observations and the anomalous variation of infrared brigthness temperature with latitude. Further millimeter wave radio and radar studies of Mars are needed.  相似文献   

6.
David Wallace  Carl Sagan 《Icarus》1979,39(3):385-400
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. These calculations differ from those of Lingenfelter et al. [(1968) Science161, 266–269] for putative lunar channels in including the effect of the atmosphere. Evaporation from the surface is governed by two physical phenomena: wind and free convection. In the former case, water vapor diffuses from the surface of the ice through a lamonar boundary layer and then is carried away by eddy diffusion above, provided by the wind. The latter case, in the absence of wind, is similar, except that the eddy diffusion is caused by the lower density of water vapor than the Martian atmosphere. For mean Martian insolations the evaporation rate above the ice is ~ 10?8 g cm?2 sec?1. Thus, even under present Martian conditions a flowing channel of liquid water will be covered with ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with quite modest discharges. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-choked rivers. Typical equilibrium thicknesses of such ice covers are ~ 10 to 30 m; typical surface temperatures are 210 to 235°K. Ice-covered channels or lakes on Mars today may be of substantial biological interest. Ice is a sufficiently poor conductor of heat that sunlight which penetrates it can cause melting to a depth of several meters or more. Because the obliquity of Mars can vary up to some 35°, the increased polar heating at such times seems able to cause subsurface melting of the ice caps to a depth which corresponds to the observed lamina thickness and may be responsible for the morphology of these polar features.  相似文献   

7.
Helium concentrations in the Martian atmosphere are estimated assuming that the helium production on Mars, comparable to its production on Earth, via the radioactive decay of uranium and thorium, is in steady state equilibrium with its thermal escape. Although non-thermal losses would tend to reduce the estimated concentrations, these concentrations are not necessarily an upper limit since higher production rates and/or a possibly lower effective exospheric temperature over the solar activity cycle could increase them to even higher values. The computed helium concentration at the Martian exobase (200 km) is 8 × 106 atoms cm?3. Through the lower exosphere, the computed helium concentrations are 30–200 times greater than the Mariner-measured atomic hydrogen concentrations. It follows that helium may be the predominant constituent in the Martian lower exosphere and may well control the orbital lifetime of Mars-orbiting spacecraft. The estimated helium mixing ratio is greater at the Martian turbopause than at the terrestrial turbopause, and the helium column density in the lower Martian atmosphere may be comparable to that on Earth.  相似文献   

8.
Pingos are massive ice-cored mounds that develop through pressurized groundwater flow mechanisms. Pingos and their collapsed forms are found in periglacial and paleoperiglacial terrains on Earth, and have been hypothesized for a wide variety of locations on Mars. This literature review of pingos on Earth and Mars first summarizes the morphology of terrestrial pingos and their geologic contexts. That information is then used to asses hypothesized pingos on Mars. Pingo-like forms (PLFs) in Utopia Planitia are the most viable candidates for pingos or collapsed pingos. Other PLFs hypothesized in the literature to be pingos may be better explained with other mechanisms than those associated with terrestrial-style pingos.  相似文献   

9.
Herbert Frey 《Icarus》1979,37(1):142-155
The resistant parts of the canyon walls of the Martian rift complex Valles Marineris have been used to infer an earlier, less eroded reconstruction of the major troughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. This is consistent with the long-standing idea that rift width is related to crustal thickness: most evidence favors a crust on Mars at least 50% thicker than that of Africa. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on Earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the Earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.  相似文献   

10.
《Planetary and Space Science》1999,47(8-9):951-970
Towards the end of southern hemisphere winter (Ls ≈ 180°) the Martian southern polar cap extends equatorward to 40°S and covers at least, the southern slopes of the Hellas and Argyre impact basins. Subsequently, during retreat of the seasonal ice cap, varying configurations of ice coverage on these slopes occur. Since both sloping topography and ice-edge effects can independently drive mesoscale circulations, the superposition of these two processes may then generate interesting wind patterns. A set of numerical experiments has been performed with the University of Helsinki 2-D Mars Mesoscale Circulation Model (MMCM) in order to study the characteristics of circulations driven by these combined forcings. A model-centre latitude of 57°S and a slope angle of 0.6°, both representative of Hellas southern slope, are used. When compared with the winds arising in the ice-free slope case, ice coverage in the upper extent of the slope results in diminished upslope (daytime) winds, while the down-slope (nighttime) flow is enhanced. Ice coverage in the lower section of the slope in turn causes enhanced upslope (daytime) and attenuated downslope (nocturnal) flows. This arises due to the daytime off-ice near-surface flow induced by the thermal contrast at the ice cap edge. The surface winds are persistently downslope over a fully ice-covered slope. Inclusion of atmospheric dust (τ = 0.3) reduces the ice-edge forcing. In comparison with the dust-free situation, the resulting circulation is almost unchanged in the case of ice-covered upper part of the slope, in the opposite case the daytime flow is attenuated and the nocturnal downslope flow enhanced. When the entire slope is ice-covered, the flow is amplified due to the increased direct atmospheric heating. Inclusion of a large scale circulation component (7 m⧸s southerly wind) in conjunction with an ice-covered slope top results in the generation of a downslope windstorm (föhn, or bora-type of event) with near surface winds exceeding 30 m⧸s. Winds of this magnitude, not realised in any of the other experiments, approach speeds deemed capable of lifting dust from the surface.  相似文献   

11.
Images from Mars Global Surveyor and later images from Mars Reconnaissance Orbiter reveal that roughly half of the meteoroids striking Mars (at meter to few decameter crater diameters) fragment in the Martian atmosphere, producing small clusters of primary impact craters. Statistics of these “primary clusters” yield valuable information about important Martian phenomena and properties of interplanetary bodies, including meteoroid behavior in the Martian atmosphere, bulk strengths of bodies striking Mars, and the fraction of Martian “field secondary” craters, a datum that would improve crater count chronometry. Many Martian impactors fragment at altitudes significantly higher than 18 km above the mean surface of Mars, and we find that most bodies striking Mars and Earth have low bulk strengths, consistent with crumbly or highly fractured objects. Applying statistics of primary clusters at various elevations and independent diameter bins, we describe a technique to estimate the percentage of semirandomly scattered “field secondary” craters. Our provisional estimate of this percentage, in the diameter range ~250 m down to ~22 m, is ~40% to ~80% of the total impacts, with the higher percentages at smaller diameters. Our data argue against earlier suggestions of overwhelming dominance by either primaries or secondaries in this diameter range.  相似文献   

12.
The author puts forward the proposal in this paper that all the terrestrial planets (Venus, the Earth, and Mars) as well as the Moon deviate from hydrostatic equilibrium to some degree. The Earth's level of deviation of these four celestial bodies is minimum, and that of Mars is maximum. Moreover, the author estimates Martian nonhydrostatic components of the principal moments-of-inertia using five models for the interior of Mars. Comparison with other terrestrial planets shows that setting the range of mean moment-of-inertia ratio, I/MR2, in 0.345 ~ 0.355for Mars is reasonable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life‐detection studies.  相似文献   

14.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

15.
In December 2006, a single active region produced a series of proton solar flares, with X-ray class up to the X9.0 level, starting on 5 December 2006 at 10:35 UT. A feature of this X9.0 flare is that associated MeV particles were observed at Venus and Mars by Venus Express (VEX) and Mars Express (MEX), which were ∼80° and ∼125° east of the flare site, respectively, in addition to the Earth, which was ∼79° west of the flare site. On December 5, 2006, the plasma instruments ASPERA-3 and ASPERA-4 on board MEX and VEX detected a large enhancement in their respective background count levels. This is a typical signature of solar energetic particle (SEP) events, i.e., intensive MeV particle fluxes. The timings of these enhancements were consistent with the estimated field-aligned travel time of particles associated with the X9.0 flare that followed the Parker spiral to reach Venus and Mars. Coronal mass ejection (CME) signatures that might be related to the proton flare were twice identified at Venus within <43 and <67 h after the flare. Although these CMEs did not necessarily originate from the X9.0 flare on December 5, 2006, they most likely originated from the same active region because these characteristics are very similar to flare-associated CMEs observed on the Earth. These observations indicate that CME and flare activities on the invisible side of the Sun may affect terrestrial space weather as a result of traveling more than 90° in both azimuthal directions in the heliosphere. We would also like to emphasize that during the SEP activity, MEX data indicate an approximately one-order of magnitude enhancement in the heavy ion outflow flux from the Martian atmosphere. This is the first observation of the increase of escaping ion flux from Martian atmosphere during an intensive SEP event. This suggests that the solar EUV flux levels significantly affect the atmospheric loss from unmagnetized planets.  相似文献   

16.
Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites.We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements.Daily (10:00–16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10–20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction.The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.  相似文献   

17.
Searching for traces of extinct and/or extant life on the surface of Mars is one of the major objectives for remote-sensing and in-situ exploration of the planet. In the present paper we study the infrared (IR) spectral modifications induced by thermal processing on differently preserved calcium carbonate fossils, in order to discriminate them from their abiotic counterparts.The main conclusion of this study is that the degree of alteration of the fossils, derived from IR spectral analysis, seems to be well correlated with the sample age, and that terrestrial fossils after a billion years are so altered that it becomes impossible to trace their biotic origin. Since it is reasonable to assume that the putative Martian fossils should be at least 3.5 billion years old, this would imply that our spectroscopic method could not be able to detect them, if their degradation rate were the same as that we have found in usual conditions for the terrestrial fossils. However, due to the different climate evolution of the two planets, there is the possibility of having two different degradation rates, much lower for Mars than for Earth, especially if the fossils are embedded in a protective layer, such as a clay deposit. In this case IR spectroscopy, coupled with thermal processing, can be a useful tool for discriminating between abiotic and biotic (fossil) carbonate samples collected on the Martian surface.  相似文献   

18.
The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic igneous rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the Moon and early Precambrian basaltic komatiites on Earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.  相似文献   

19.
Abstract— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.  相似文献   

20.
Hannu Savijärvi 《Icarus》2012,221(2):617-623
The daytime convective boundary layer (CBL) of Mars and the transition to it after the cold night is studied on a warm dusty sol at the rover Spirit using temperature profiles from the miniature thermal emission spectrometer (mini-TES) and a 1-D model. The model’s net solar fluxes are linear in z in the CBL while the thermal fluxes decay logarithmically from about 8 m upward, due mainly to the emissivity properties and density of CO2. The induced strong radiative heating of the lower CBL is so well compensated by turbulent cooling (with an elevated maximum in the sensible heat flux H) that the growth of the CBL is uniform by the model, as observed by the mini-TES. Hence the net energy fluxes are linear and the shape of H in the lower CBL can be obtained as a residual. Moisture evolution is also considered although without validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号