首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
The influence of low-frequency electrostatic turbulence on the flux of precipitating magnetospheric electrons is analyzed in the framework of the quasilinear kinetic equation. It is shown that an electron population in a turbulent region, with an electric field parallel to the ambient magnetic field, can be separated into two parts by introducing a pitch angle dependent runaway velocity vr(θ). Lower energy electrons with parallel velocity v < vr are effectively scattered by plasma waves, so that they remain in the main population and are subjected to an anomalous transport equation. A distribution function fv?4 (or the particle flux vs energy JE?1) is established in this velocity range. Faster electrons with v ? vr are freely accelerated by a parallel electric field, so that they contribute directly to hot electron fluxes which are observed at ionospheric altitudes. New expressions are derived for the magnetic-field aligned current and the electron energy flux implied by this model. These expressions agree well with empirical relations observed in auroral inverted-V structures.  相似文献   

2.
The properties of small but finite amplitude dust acoustic (DA) shock waves are studied in a charge varying dusty plasma with ions and electrons having kappa velocity distribution. We obtain the global Debye length including the influence of suprathermality effects and dust charge fluctuations. It is shown that the effects of suprathermality of ions/electrons and dust charge fluctuation significantly modify the basic properties of DA shock wave. We observe that only negative DA shock waves will be excited in this model. The amplitude of DA shock wave increases with deviation of electrons or ions from Maxwellian distribution via decrease of spectral index, κ j (j=i,e denotes, ions and electrons, respectively). Also, it is indicated that the amplitude and steepness of the shock front decreases with an increase in the ion temperature.  相似文献   

3.
It has been hypothesized for quite some time that interplanetary pick-up ions due to energization taking place in the region close to the solar wind termination shock, at some fraction and as an outcome of a complicated chain of processes, eventually are converted into species of the anomalous cosmic-ray particles. For the actual conversion efficiency it is of great importance to know the energy distribution of these pick-up ions upon their arrival at the shock. It turns out that pre-acceleration of these ions during their passage through the heliosphere shall substantially increase their chances to become reflected at the shock into the upstream direction which is a prerequisite for a further climb-up in energy by virtue of Fermi-1 acceleration processes. In this paper we start out from stochastically pre-accelerated pick-up ions and investigate their behaviour at the shock. With the use of adiabatic approaches in the de Hoffman-Teller frame of the shock, we calculate the energy distribution function of the reflected part of pick-up ions. From the calculated distribution functions it turns out that the reflected ions in the average suffer an energy increase by about a factor of 10, still not enough to let them move off the shock by spatial diffusion in the upstream direction. Thus, since converted back into the shock, they can undergo repeated reflections and energy gains till the diffusion-convection limit is reached. As we show in addition, the reflection probability for pick-up ions is about a factor of 10 higher than expected from the present literature and strongly varies with the off-axis angle, pointing to the fact that the termination shock represents a surface with a three-dimensionally varying source strength for the production of anomalous cosmic rays. The ACR source pattern is also expected to vary during the solar cycle and the relevant injection energies are expected to be larger by factors of 10 to 100 than the canonically adopted 1 keV nucl–1.Institute for Problems of Mechanics of the Russian Academy of Sciences, Prospect Vernadskogo 101, 117526, Moscow, Russia.  相似文献   

4.
From the analysis of 119 low-frequency (LF) burst spectra observed onboard the Wind spacecraft, we propose an interpretation of the frequency-time characteristics including the low frequency cutoff of the LF burst spectra, and we use these characteristics to sound the bow shock structure at large tailward distances from Earth. When observed from within the solar wind, LF bursts appear to be made of two spectral components. The high frequency one is bursty and observed above twice the solar wind plasma frequency fpsw. The low frequency one is diffuse (ITKR) and its spectrum extends from about 2fpsw to a cutoff frequency fc not much higher than fpsw; its onset time δt(f) increases as the frequency f decreases. For each of the 119 events observed from near the Lagrange point L1, the solar wind density variations were measured and the variations of the density jump across the shock calculated from plasma data all along a shock model over more than 2000RE. But, except for a few events, neither the solar wind overdensities nor the shock density barrier can prevent waves with frequencies below fc from reaching the spacecraft. Scattering on plasma density inhomogeneities was then introduced to account for the propagation of the LF burst waves in the magnetosheath, from near Earth to their escape point through the bow shock at a frequency-dependent distance |Xesc(f)| (GSE), and then in the solar wind to the spacecraft. In such media, at frequencies between 2fpsw and fpsw, the bulk speed of the scattered waves decreases rapidly as f decreases, and this accounts for the observed variations of the onset time δt(f). Angular scattering can also account for the observed cutoff at fc if the distance |Xesc(f)| increases exponentially when f/fpsw decreases. As the shock model we used meets that requirement, we consider that this model is valid, which implies that the bow shock still exists beyond 1000RE from the Earth. The observed decrease of the average spectral intensity of the LF burst between about 1.5fpsw and 2fpsw can also be explained by the scattering in the solar wind if we take into account the angular distribution of the rays when they leave the bow shock.  相似文献   

5.
Measurements of energetic heavy ions using the Explorer 45 and ATS-6 satellites are reviewed and the resulting implications for theory are evaluated. The measured ions are basically protons and helium ions in the energy range from 0.1 to 1 MeV/nucleon. The equatorial energetic ion distributions inside L = 4.5 are found to be very stable for extended periods of time. These ions are very closely confined to the equatorial plane and are sharply peaked as a function of L around a value designated as Lmax. Beyond L = 5.0 the fluxes of these ions are more variable with order of magnitude variations being observed at L = 6.6 on the time scales of minutes, hours, or days. The region inside L = 4.5 appears to be well described by radial diffusive transport driven by fluctuations in the geomagnetic field coupled with losses due to charge exchange and Coulomb interactions with ambient hydrogen geocorona and terrestrial plasma environment. From an analysis relating the position in L-value of the maximum intensity, Lmax, observed for a given ion species and energy, it is argued that the influence of fluctuations in the convection electric field as discussed by Cornwall (1972) are not effective in radially diffusing in L ions with energies greater than a few hundred kiloelectron volts per nucleon. The source of these ions remains basically undetermined and its determination must await further measurements.  相似文献   

6.
An attempt is made to account for the decimetre portion of the Type-IV solar radio bursts by plasma emission. Non-thermal electrons (E ~ 500 keV) trapped in a magnetic mirror (IVdm, burst source) having loss-cone gap distribution excite plasma waves which are transformed into transverse waves through non-linear scattering by ions. A good agreement was reached between the calculated spectrum and the observed fluxes for the event of 1972 August 2. A distribution of the number of non-thermal electrons with height, and a total number of 1032, were obtained. Also it was found that the Langmuir waves can accelerate some background thermal electrons to the MeV range.  相似文献   

7.
The very early universe must have been extremely homogeneous, even on scales far exceeding the particle horizon. Within the framework of the standard Friedmann cosmology, homogenization can only be achieved by quantum effects which violate classical causality. This could happen when the particle horizon was smaller than the Compton wavelength of the pion. The assumption that statistical departures from equilibrium started to grow after this epoch leads to a prediction of the density fluctuations at recombination. The amplitude ν of the fluctuations should have a maximum of about 0.007 on scales of 81017M. For smaller scales, ν ∝M +1/6, and for larger scales, ν ∝M ?1/2. This suggests that superclusters condense out at a red shift of about 11, and clusters and then galaxies form shortly after by fragmentation.  相似文献   

8.
This investigation on the temperature of the interstellar warm ionized medium (WIM) is characterized by the number and energy balance of the constituents of the WIM complex plasma viz. H plasma (electrons/ions/neutral atoms) and graphite dust, having a size distribution, characterized by the MRN (Mathis, Rumpl and Nordsieck) power law. Ionization of neutral atoms, electron–ion recombination, photoemission of electrons from and accretion on the dust and cooling through electron collisional excitation, followed by radiative decay of atoms has been included in the analysis. An appropriate expression for the rate of emission and mean energy of photoelectrons emitted from the surface of positively charged dust particles has been used which takes into account the dependence of absorption efficiency on wavelength of the radiation, radius of the particle and spectral irradiance distribution. The results of the parametric analysis have been displayed graphically. It is seen that the consensus values of temperature, surface potential on the dust particles and electron/ion/neutral atom densities, characteristic of interstellar warm ionized medium can be explained on the basis of plausible combinations of the dust particle density n d and the parameter f ex α ex , where f ex is the fraction of the energy of the neutral gas atoms which gets irradiated, α ex n e n n is the number of the neutral atoms, which get excited per unit volume per unit time and n e (n n ) correspond to the density of electrons (neutral atoms).  相似文献   

9.
In this paper we have derived kinetic equations for the decay of kinetic and thermal energy of a weak homogenous turbulent flow in which the fluctuating temperature field is superimposed on the eddy velocity field. Random fluctuations of velocity and temperature in a one-dimensional model have been considered on the basis of wavenumbers in Fourier space together with linearized mode approximations. Energy decay equations have been obtained in closed form, using quasi-normal approximations and the Bogoliubov expansion method. The paper also discusses the cases off=v andf=0.  相似文献   

10.
To study the macroscopic acceleration process for non-thermal particles at the front of MHD shock waves, two limiting treatments, namely the “adiabatic” and the “kink” treatments have been developed. They correspond to cases of (particle gyroradius)/(width of shock transition region) ? 1 and ? 1, respectively. The effects of the acceleration process on energy and pitch angle distributions of reflected particles are examined by using each of these treatments and results are compared. It is shown that these two treatments give almost the same energy and pitch angle distribution in the case of nearly-perpendicular shock waves. In the case of nearly-parallel shock waves, the pitch angle distributions differ significantly, there being reflected particles in the adiabatic loss cone when the kink treatment is employed, while the ranges of the energy distribution for these two treatments do not differ greatly. Analytic representation for the acceleration in the adiabatic treatment is given for the later usage.  相似文献   

11.
For 60 Class DII radio sources, I calculate the linear size of the radio components d in the direction perpendicular to the line joining the components. I find 1) d has an upper limit of 150 kpc and a lower limit of 4~ 6 kpc, and 2) d, is correlated with the luminosity Mv of the central body, smaller components being associated with lower luminosities. This correlation is shown both by the regression of Mv on d, for 13 sources with redshifts between 0.35 and 0.60 and by an upper envelope in the Mv ? d plot for the entire sample. This result is in conflict with the usual expanding models of radio lobes. An alternative model is proposed here: a radio lobe is taken to be a mass of turbulent plasmon formed with the intergalactic medium behind the shock front excited by an energy-carrying beam from the central body. The size of the lobe varies with the drilling velocity at the tip of the beam, which in turn depends on the energy transported within the beam. As the central body gets depleted, both its luminosity and the energy injected into the beam become less and the lobe gets smaller. An exponentially decaying central store can reproduce the observed statistical relation.  相似文献   

12.
The impact light flash produced by electrostatically accelerated iron particles with diameters meters ranging from 5 to 0.05 μm and velocities lying between 1 km/sec and 30 km/sec has been investigated by means of photomultipliers. As target materials mainly gold and tungsten were used. The pulse of the multiplier was registered directly and after electronic integration. The pulse height of the multiplier signal, the amplitude of the integrated signal as well as its rise time were found to be unique functions of the mass and velocity of the impacting particle. For the pulse height of the differential signal the relation I = c1 × m1.25 × v5 was obtained, and for the integrated signal the relation I = c2 × m1.25 × v3.8, with only c1 and C2 depending on the target material. The rise time of the integrated signal follows the relation T = 2.2 × 102 × v?0.4 using gold as target, and in the case of tungsten material follows the relation T = 9.8 × 102 × v?1.2, where v is expressed in km/sec and T in μsec. Using the spectral distribution of the light intensity, measured by means of calibrated photomultipliers, the total amount of light energy emitted in the visible range could be calculated. As a result we obtained that for v = 4 km/sec and m = 10?11 g about 3 × 10?4 of the kinetic energy of the particle was converted into light energy. The variation of the impact flash intensity with the target material and the measured spectral distribution allowed the temperature of the crater after the impact to be estimated as between 2000 and 3000 K.  相似文献   

13.
The volume filling factor f v of the diffuse ionized gas in the bright emission ring of M 31 is derived from radio continuumobservations. The dependence of f v on the local mean electron density n e is a power law, f v(n e) = a n e -bwith a = 0.011± 0.003 and b = -1.2± 0.3, where n e is in cm-3. The same power law was recently found for the DIG in the solar neighbourhood from pulsar data.  相似文献   

14.
The parameters of the magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284?Å images showed that the density of the net magnetic flux, B net, does not correlate with the associated solar wind speeds, V x . Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between B net and V x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of the complexity of the magnetic field, the filling factor, f(r), was calculated as a function of spatial scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a multifractal structure and highly intermittent, burst-like energy release regime. The absence of the necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.  相似文献   

15.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   

16.
An important contribution to the thermalization of the solar wind ions at the Earth's bow shock for high Mach numbers comes from the reflection of a fraction of these ions from the shock. Previous studies have examined the trajectories of the reflected ions assuming the shock to be an infinite plane. In this paper a model is developed to describe the trajectories of particles after reflection for a variety of shock geometries. Of particular interest are the initial conditions which allow the particle to return to the shock with a greater normal velocity than at first encounter, or to return to the shock at all. The effects of the magnetic field direction and the curvature of the shock on particle trajectories are discussed for cylindrical and spherical shock geometries and compared to those for a planar shock.  相似文献   

17.
Since the Saturn orbit insertion of the Cassini spacecraft in mid-2004, the Cassini composite infrared spectrometer (CIRS) measured temperatures of Saturn’s main rings at various observational geometries. In the present study, we apply our new thermal model (Morishima, R., Salo, H., Ohtsuki, K. [2009]. Icarus 201, 634-654) for fitting to the early phase Cassini data (Spilker, L.J., and 11 colleagues [2006]. Planet. Space Sci. 54, 1167-1176). Our model is based on classical radiative transfer and takes into account the heat transport due to particle motion in the azimuthal and vertical directions. The model assumes a bimodal size distribution consisting of small fast rotators and large slow rotators. We estimated the bolometric Bond albedo, AV, the fraction of fast rotators in cross section, ffast, and the thermal inertia, Γ, by the data fitting at every radius from the inner C ring to the outer A ring. The albedo AV is 0.1-0.4, 0.5-0.7, 0.4, 0.5 for the C ring, the B ring, the Cassini division, and the A ring, respectively. The fraction ffast depends on the ratio of scale height of fast rotators to that of slow rotators, hr. When hr = 1, ffast is roughly half for the entire rings, except for the A ring, where ffast increases from 0.5 to 0.9 with increasing saturnocentric radius. When hr increases from 1 to 3, ffast decreases by 0.2-0.4 for the B and A rings while no change in ffast is seen for the optically thin C ring and Cassini division. The large ffast seen in the outer A ring probably indicates that a large number of small particles detach from large particles in high velocity collisions due to satellite perturbations or self-gravity wakes. The thermal inertia, Γ, is constrained from the efficiency of the vertical heat transport due to particle motion between the lit and unlit faces, and is coupled with the type of vertical motion. We found that in most regions, except for the mid B ring, sinusoidal vertical motion without bouncing is more reasonable than cycloidal motion assuming bouncing at the midplane, because the latter motion gives too large Γ as compared with previous estimations. For the mid B ring, where the optical depth is highest in Saturn’s rings, cycloidal vertical motion is more reasonable than sinusoidal vertical motion which gives too small Γ.  相似文献   

18.
Chuan-Yi Tu 《Solar physics》1987,109(1):149-186
A new solar wind model has been developed by including in the model the Alfvénic fluctuation power spectrum equation proposed by Tu et al. (1984). The basic assumptions of the model are as follows: (1) for heliocentric distances r > 10 R , the radial variation of the power spectrum of Alfvénic fluctuations is controlled by the spectrum equation (1), (2) for heliocentric distances r < 10 R , the radial variation of the fluctuation amplitude is determined by the Alfvén wave WKB solution, (3) no energy cascades from the low-frequency boundary of the Alfvénic fluctuation power spectrum into the fluctuation frequency range, and the energy which cascades from the high-energy boundary of the spectrum into the higher frequency range is transported to heat of the solar wind flow. Some solutions of this model which, on one hand, describe the major properties of the Alfvénic fluctuations and the high-speed flow observed by Helios in the space range between 0.3–1 AU and, on the other hand, are consistent with the observational constraints at the coronal base have been obtained under the following conditions: (1) the spectrum index of the fluctuations is near to -1 for almost the whole frequency range at 10 R , (2) the particle flux density at 1 AU is not greater than 3 × 108 cm?2 s?1, (3) the solution is for spherically-symmetric flow geometry or the solution passes through the outermost of the three critical points of the rapidly diverging flow geometry with f max = 7. Some solutions passing through the innermost critical point of the rapidly diverging flow geometry with f max = 7 have been found, however, with too low pressure at the coronal base to compare with the observational constraints. Heat addition or other kind of momentum addition for r < 10 R is required to modify this model to yield better agreement with observations. A cascade energy flux function which leads to Kolmogorov power law in the high-frequency range of Alfvénic fluctuations is presented in Appendix A. More detailed discussions about the characteristics, the boundary conditions and the solution of the spectrum equation (1) are given in Appendix B.  相似文献   

19.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

20.
Low-energy particle trajectories in an idealized magnetotail magnetic field are investigated to determine the accessibility of magnetosheath protons and electrons to the plasma sheet along the flanks of the tail magnetopause. The drift motion of the positively (negatively) charged particles incident on the dawn (dusk) magnetotail flank causes such particles to penetrate deeper into the magnetotail. For certain combinations of particle energy, incident velocity vector and initial penetration point on the tail magnetopause, the incident particles can become trapped in the plasma sheet, after which their net drift motion then provides a current capable of supporting the entire observed magnetotail field. The results further indicate that the bulk of the solar wind plasma just outside the distant tail boundary, which streams preferentially in a direction along the magnetopause away from the Earth at velocities around 400 km s?1, can be caught up in the tail if the initial penetration point is within about 2RE, of the quasi-neutral sheet. It is suggested that a large fraction of the magnetotail plasma is composed of former solar wind particles which have penetrated the magnetospheric boundary at the tail flanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号