首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Lower Zone–Critical Zone boundary of the BushveldComplex is an intrusion-wide, major stratigraphic transitionfrom ultramafic harzburgite and pyroxenite in the Lower Zoneto increasingly plagioclase-rich pyroxenites and norites inthe Critical Zone. Quantitative textural and compositional datafor 29 samples through this transition show the following: LowerZone orthopyroxene grains are larger, have higher aspect ratios,are better foliated and have a lower trapped liquid componentthan those of the Critical Zone. The larger grain size of theLower Zone results in crystal size distribution plots that arerotated to lower slopes and intercepts relative to those inthe Critical Zone. Although all rocks show differing amountsof foliation, mineral lineations are weak to absent. These dataare consistent with significant compaction-driven recrystallizationin the study section. Numerical modeling of concurrent compactionand crystallization provides a quantitative model of how theLower Zone–Critical Zone transition may have formed: plagioclaseis rare in the Lower Zone because compaction removes interstitialliquid before it reaches plagioclase saturation. However, asthe crystal pile grows, plagioclase saturation is reached inthe interstitial liquid before compaction is complete in moreevolved pyroxenites, producing more abundant but still modestamounts of plagioclase characteristic of the Lower CriticalZone. It is concluded that both the textures and the modal mineralogyare largely controlled by compaction and compaction-driven recrystallization;primary magmatic textures are not preserved. KEY WORDS: Bushveld Complex; compaction; crystal size distributions; crystal aging; igneous textures  相似文献   

2.
The evolved, iron-rich rocks of the tholeiitic Bushveld and Skaergaard intrusions are similar in containing cumulus magnetite, ilmenite, plagioclase, clinopyroxene, apatite and olivine, and also orthopyroxenes/pigeonite in Bushveld. Here, we evaluate their liquid evolution trends using the total iron content in plagioclase determined by electron microprobe analyses. To aid this analysis a revised mass balance model for the liquid evolution of Skaergaard is presented. For plagioclase in the Upper Zone of Skaergaard it was previously demonstrated that total FeO increases from ~0.25 to ~0.45 wt% with differentiation and correlates inversely with An% [100 × Ca/(Na + Ca)]. The reverse trend is observed in two recently published datasets for Bushveld, showing that total FeO in plagioclase decreases upward through the magnetite-bearing Upper Zone from ~0.30 to ~0.15% and from ~0.40 to ~0.25% in the western and northern limbs, respectively, and correlates positively with An%. The partition coefficient of total iron between plagioclase and magma increases with oxidation and polymerisation in the liquid. Although Bushveld formed under slightly more oxidizing conditions than Skaergaard, differences in the partition coefficients cannot explain the two observed trends. We therefore conclude that the differentiation trends of the liquids subsequent to magnetite saturation were fundamentally different. The inferred liquid composition for Bushveld contained about 15 wt% total FeO at the level of magnetite-in, which is slightly less than the total FeO content of the subsequent cumulates. In contrast, the Skaergaard liquid contained more total FeO than the ensuing cumulates. As a result, in Bushveld residual liquids total FeO decreased after magnetite saturation, whereas in Skaergaard the residual liquids continued to become enriched in iron. This conclusion is corroborated by simple mass balance calculations between modelled residual liquids and extracted cumulate rocks. Despite the mineralogical similarities of evolved iron-rich rocks of Skaergaard and Bushveld, their liquid evolution trends were very different, and generalizations about the extent of iron enrichment in tholeiitic magmas should be avoided.  相似文献   

3.
We have determined the S, Se, Cu and La contents through a complete stratigraphic section of the Bushveld Complex. The principle aim was to determine which phases controlled these elements. S, Se and Cu show positive correlations, but these elements do not correlate with La. In most cases, the concentration of S, Se and Cu in rocks containing greater than 800 ppm S can be modeled by segregation of a Fe–Ni–Cu sulfide liquid from a fractionating magma. As the magma evolved, Se and Cu were depleted by the continual segregation of sulfide liquid and the S/Se and S/Cu of the rocks increased. The Se/Cu ratio is higher in the more evolved rocks, which suggests that Se has a slightly lower partition coefficient than Cu into sulfide liquid (1,200 versus 1,700). The Lower and lower Critical Zone of the complex contains on average only 99 ppm S. The low S content of these rocks has led some authors to suggest that these rocks do not contain cumulate sulfides, despite the fact that they are moderately enriched in PGE. These samples fall along the same trend as the S-rich samples on the S-versus-Se plot and the S/La and Se/La ratios are greater than the initial magmas suggesting that despite the low S contents cumulate sulfides are present. Three models may be suggested in order to explain the low S content in the Lower and Critical Zone rocks: (a) the sulfides that were present have migrated away from the cumulate pile into the footwall or center of the intrusion; (b) the magma was saturated in sulfides at depth and during transport some sulfides lagged in embayments; (c) the rocks have lost both S and Se at high temperature. The first two models have important implications for exploration.  相似文献   

4.
The trace element distribution in three selected olivine-bearing gabbros from the Northern Apennine ophiolites has been determined. These rocks consist of euhedral plagioclase and olivine, and subhedral to poikilitic clinopyroxene. Fe-Ti-oxides, titanian pargasite, orthopyroxene and apatite occur as interstitial accessory minerals. Plagioclase, clinopyroxene and accessory minerals were analysed for rare earth (REE) and selected trace elements by secondary ion mass spectrometry. Both plagioclase and clinopyroxene are compositionally zoned. The plagioclase rims have slightly lower anorthite component and higher light REE (LREE), Ba and K than the cores. Likewise, the clinopyroxene rims show a slight Mg and Cr decrease, and a marked increase in Zr, REE and Y relative to the core. The rims of plagioclase and clinopyroxene, Fe-Ti-oxides, apatite and titanian pargasite most likely formed through post-cumulus fractional crystallization of interstitial liquid. It is argued that such interstitial liquid had an exotic component, probably related to the infiltration of highly evolved, slightly LREE enriched liquid in the cumulate pile. On the basis of mass balance calculations, we show that Fe-Ti-oxides play an important role in the Ti budget of the whole rock, as does apatite for LREE. Received: 15 January 1998 / Accepted: 22 September 1998  相似文献   

5.
Magmatic Ni-Cu sulfide ores at Voisey’s Bay contain complex assemblages of extremely heterogeneous rocks. These range from polymict breccias, with rock fragments in sulfide-rich and/or sulfide-poor matrices, to heterogeneous “vari-textured” gabbros with rapid short range variations in grain size and content of hydrous phases. Rock fragment populations in the breccias include endogenous olivine gabbros (cumulate and non-cumulate) and cumulate peridotites along with extensively depleted plagioclase-hercynite gneisses interpreted as restites from extensive partial melting of country rock quartzo-feldspathic paragneisses. Using a combination of desk-top microbeam XRF mapping at cm scale and 3D X-ray tomography, we show that both sulfide-poor and sulfide-rich breccias comprise heterolithic assemblages of clasts within a matrix of olivine gabbro. This matrix is characterised by an interconnected 3D framework of plagioclase crystals, highly variable in grain size at mm to cm scale, with interstitial olivine and poikilitic clinopyroxene, and is texturally indistinguishable from clast-free olivine gabbro. Sulfide forms interconnected networks at cm to dm scale and possibly larger. Much of the plagioclase developed by outgrowth from the margins of paragneiss xenoliths when the porosity was occupied by silicate melt. The observed range of textures is explained by a model of percolation of molten sulfide through variably crystalline inter-clast matrix, displacing the silicate melt to leave the refractory plagioclase-olivine or in some cases plagioclase-only component, now entirely within a sulfide matrix. The process is analogous to that believed to have formed interspinifex ore in komatiite-hosted deposits. Biotite rims on plagioclase enclosed in sulfide are interpreted as the result of reaction between plagioclase, olivine and a hydrous component derived from the sulfide melt itself, with a possible component of migrating residual silicate melt wicking along sulfide-silicate contacts. This sulfide infiltration model offers an alternative to the current model for upward emplacement of a slurry of silicate melt, sulfide melt and breccia fragments as a late stage injection into the dyke-sill complex. The preserved range of textures is interpreted as being due to gravity-driven percolation of sulfide liquid through a pre-existing partially molten intrusion breccia. In this model, the breccia serves as a physical trap site, accumulating downward migrating sulfide liquid. However, the invariable close mutual association of sulfide and rock fragments at Voisey’s Bay implies a common derivation.  相似文献   

6.
Halogen-bearing minerals, especially apatite, are minor butubiquitous phases throughout the Bushveld Complex. Interstitialapatite is near end-member chlorapatite below the Merensky reef(Lower and Critical Zones) and has increasingly fluorian compositionswith increasing structural height above the reef (Main and UpperZones). Cl/F variations in biotite are more limited owing tocrystal-chemical controls on halogen substitution, but are alsoconsistent with a decrease in the Cl/F ratio with structuralheight in the complex. A detailed section of the upper LowerZone to the Critical Zone is characterized by an upward decreasein sulfide mode from 0·01–0·1% to trace–0·001%.Cu tends to correlate with other incompatible elements in mostsamples, whereas the platinum-group elements (PGE) can behaveindependently, particularly in the Critical Zone. The decreasein the Cl/F ratio of apatite in the Main Zone is associatedwith a shift to more radiogenic Sr isotopic signature, implyingthat the unusually Cl-rich Lower and Critical Zones are notdue to assimilation of crustal rocks. Nor is the Main Zone moreCl rich where it onlaps the country rocks of the floor, suggestinglittle if any Cl was introduced by infiltrating country rockfluids. Instead, the results are consistent with other studiesthat suggest Bushveld volatile components are largely magmatic.This is also supported by apatite–biotite geothermometry,which gives typical equilibrium temperatures of 750°C. Theincreasingly fluorian apatite with height in the Upper Zonecan be explained by volatile saturation and exsolved a Cl-richvolatile phase. The high Cl/F ratio inferred for the Lower andCritical Zone magma(s) and the evidence for volatile saturationduring crystallization of the Upper Zone indicate the Lowerand Critical Zones magma(s) were unusually volatile rich andcould easily have separated a Cl-rich fluid phase during solidificationof the interstitial liquid. The stratigraphic distribution ofS, Cu and the PGE in the Critical Zone cannot readily be explainedeither by precipitation of sulfide as a cotectic phase or asa function of trapped liquid abundance. Evidence from potholesand the PGE-rich Driekop pipe of the Bushveld Complex implythat migrating Cl-rich fluids mobilized the base and preciousmetal sulfides. We suggest that the distribution of sulfideminerals and the chalcophile elements in the Lower and CriticalZones reflects a general process of vapor refining and chromatographicseparation of these elements during the evolution and migrationof a metalliferous, Cl-rich fluid phase. KEY WORDS: Bushveld Complex; chlorine; platinum-group elements; layered intrusions  相似文献   

7.
Discordant ultramafic pipes cut most of the layered sequence of the Bushveld Complex. We have studied one pipe in detail, the Tweefontein pipe, which cuts the Critical Zone, eastern Bushveld Complex, because it is well-exposed in a new road cutting. Field relations suggest that these pipes were emplaced while the layered rocks were extremely hot and incapable of brittle failure. The existence of displaced chromitite and anorthosite fragments in this discordant body is suggestive of an intrusive magmatic, rather than metasomatic, mode of emplacement. Initial Sr isotopic ratios of plagioclase from the pipe are in the range 0.7073 to 0.7079, which contrast with typical ratios of 0.7055 to 0.7065 for the Critical Zone, and >0.708 for Main Zone. These data preclude an origin for the pipe as residual magmas from the adjacent layered rocks. The compositions of, and extensive exsolution in, pyroxenes in the pipe indicate temperatures of formation comparable to those of the layered sequence itself, and that they underwent slow cooling comparable to the surrounding layered rocks, such that they both have similar closure temperatures. Preferential replacement of leuconoritic layers suggests a temperature of emplacement in excess of the plagioclase–pyroxene cotectic temperature. The per mil δ18O difference between plagioclase and pyroxene (Δplag–px) for samples from within the pipes ranges from 0.4 to 1.0, and averages 0.7 (for nine pairs), compared to Δplag–px of 0.4 to 0.6 for host rocks, again consistent with magmatic temperatures of formation. Oxygen isotope ratios for plagioclase and pyroxene in the pipes and layered host rocks are comparable, and preclude a significant fluid contribution from metamorphosed sediments in the floor of the Bushveld Complex in the formation of the primary mineralogy. The presence of hornblende, and occasional higher Δplag–px values than in the normal layered sequence rocks suggest lower temperature equilibration in the pipe, probably in the presence of a fluid. Higher absolute δ18O values for both minerals in a few of the pipe and host samples suggest reaction with a later fluid. These discordant ultramafic pipes are considered to form by emplacement of magma batches, which are Sr-isotopically distinct from those which produced the adjacent layered rocks of the Bushveld Complex, but were nevertheless extremely closely related in time to the main intrusive events. Dissolution of host rocks, rather than purely mechanical dilation, provided the space for pipe emplacement. However, the pipe may have acted ultimately as a channelway for low-temperature hydrothermal fluids related to later faulting in the immediate vicinity. Received: 10 October 1998 / Accepted: 22 May 2000  相似文献   

8.
The Lesser Antilles Volcanic Arc is remarkable for the abundance and variety of erupted plutonic xenoliths. These samples provide a window into the deeper crust and record a more protracted crystallisation history than is observed from lavas alone. We present a detailed petrological and in situ geochemical study of xenoliths from Martinique in order to establish their petrogenesis, pre-eruptive storage conditions and their contribution to construction of the sub-volcanic arc crust. The lavas from Martinique are controlled by crystal–liquid differentiation. Amphibole is rarely present in the erupted lavas, but it is a very common component in plutonic xenoliths, allowing us to directly test the involvement of amphibole in the petrogenesis of arc magmas. The plutonic xenoliths provide both textural and geochemical evidence of open system processes and crystal ‘cargos’. All xenoliths are plagioclase-bearing, with variable proportions of olivine, spinel, clinopyroxene, orthopyroxene and amphibole, commonly with interstitial melt. In Martinique, the sequence of crystallisation varies in sample type and differs from other islands of the Lesser Antilles arc. The compositional offset between plagioclase (~An90) and olivine (~Fo75), suggests crystallisation under high water contents and low pressures from an already fractionated liquid. Texturally, amphibole is either equant (crystallising early in the sequence) or interstitial (crystallising late). Interstitial amphibole is enriched in Ba and LREE compared with early crystallised amphibole and does not follow typical fractionation trends. Modelling of melt compositions indicates that a water-rich, plagioclase-undersaturated reactive melt or fluid percolated through a crystal mush, accompanied by the breakdown of clinopyroxene, and the crystallisation of amphibole. Geothermobarometry estimates and comparisons with experimental studies imply the majority of xenoliths formed in the mid-crust. Martinique cumulate xenoliths are inferred to represent crystal mushes within an open system, through which melt can both percolate and be generated.  相似文献   

9.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

10.
The Bellevue drillcore intersects ~3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of ~40 to ~170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30–40% pyroxene). We examined the textures and mineral compositions of a ~40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density increase is produced by the downward infiltration of noritic magma into a previously emplaced plagioclase-rich crystal mush. Fresh noritic magma soaked down into the crystallizing anorthositic mush, partially dissolving plagioclase laths and assimilating Fe-enriched pore melt. The presence of multiple cycles showing upward increases in density in the Bellevue drillcore suggests that downward magma infiltration occurred episodically during crystallization of the Main Zone.  相似文献   

11.
The thickness of the crystal mush on magma chamber floors can be constrained using the offset between the step-change in the median value of dihedral angles formed at the junctions between two grains of plagioclase and a grain of another phase (typically clinopyroxene, but also orthopyroxene and olivine) and the first appearance or disappearance of the liquidus phase associated with the step-change in median dihedral angle. We determined the mush thickness in the Rustenburg Layered Suite of the Bushveld Complex at clinopyroxene-in (in Lower Main Zone) and magnetite-in (in Upper Zone). We also examined an intermittent appearance of cumulus apatite in Upper Zone, using both the appearance and disappearance of cumulus apatite. In all cases, the mush thickness does not exceed 4 m. These values are consistent with field observations of a mechanically rigid mush at the bases of both magnetitite and chromitite layers overlying anorthosite. Mush thickness of the order of a few metres suggests that neither gravitationally-driven compaction nor compositional convection within the mush layer is likely to have been important processes during solidification: adcumulates in the Bushveld are most likely to have formed at the top of the mush during primary crystallisation. Similarly, it is unlikely either that migration of reactive liquids occurs through large stretches of stratigraphy, or that layering is formed by mechanisms other than primary accumulation.  相似文献   

12.
Origin of the UG2 chromitite layer, Bushveld Complex   总被引:3,自引:0,他引:3  
Chromitite layers are common in large mafic layered intrusions.A widely accepted hypothesis holds that the chromitites formedas a consequence of injection and mixing of a chemically relativelyprimitive magma into a chamber occupied by more evolved magma.This forces supersaturation of the mixture in chromite, whichupon crystallization accumulates on the magma chamber floorto form a nearly monomineralic layer. To evaluate this and othergenetic hypotheses to explain the chromitite layers of the BushveldComplex, we have conducted a detailed study of the silicate-richlayers immediately above and below the UG2 chromitite and anotherchromitite layer lower in the stratigraphic section, at thetop of the Lower Critical Zone. The UG2 chromitite is well knownbecause it is enriched in the platinum-group elements and extendsfor nearly the entire 400 km strike length of the eastern andwestern limbs of the Bushveld Complex. Where we have studiedthe sequence in the central sector of the eastern Bushveld,the UG2 chromitite is embedded in a massive, 25 m thick plagioclasepyroxenite consisting of 60–70 vol. % granular (cumulus)orthopyroxene with interstitial plagioclase, clinopyroxene,and accessory phases. Throughout the entire pyroxenite layerorthopyroxene exhibits no stratigraphic variations in majoror minor elements (Mg-number = 79·3–81·1).However, the 6 m of pyroxenite below the chromitite (footwallpyroxenite) is petrographically distinct from the 17 m of hangingwall pyroxenite. Among the differences are (1) phlogopite, K-feldspar,and quartz are ubiquitous and locally abundant in the footwallpyroxenite but generally absent in the hanging wall pyroxenite,and (2) plagioclase in the footwall pyroxenite is distinctlymore sodic and potassic than that in the hanging wall pyroxenite(An45–60 vs An70–75). The Lower Critical Zone chromititeis also hosted by orthopyroxenite, but in this case the rocksabove and below the chromitite are texturally and compositionallyidentical. For the UG2, we interpret the interstitial assemblageof the footwall pyroxenite to represent either interstitialmelt that formed in situ by fractional crystallization or chemicallyevolved melt that infiltrated from below. In either case, themelt was trapped in the footwall pyroxenite because the overlyingUG2 chromitite was less permeable. If this interpretation iscorrect, the footwall and hanging wall pyroxenites were essentiallyidentical when they initially formed. However, all the modelsof chromitite formation that call on mixing of magmas of differentcompositions or on other processes that result in changes inthe chemical or physical conditions attendant on the magma predictthat the rocks immediately above and below the chromitite layersshould be different. This leads us to propose that the Bushveldchromitites formed by injection of new batches of magma witha composition similar to the resident magma but carrying a suspendedload of chromite crystals. The model is supported by the commonobservation of phenocrysts, including those of chromite, inlavas and hypabyssal rocks, and by chromite abundances in lavasand peridotite sills associated with the Bushveld Complex indicatingthat geologically reasonable amounts of magma can account foreven the massive, 70 cm thick UG2 chromitite. The model requiressome crystallization to have occurred in a deeper chamber, forwhich there is ample geochemical evidence. KEY WORDS: Bushveld complex; chromite; crystal-laden magma; crustal contamination; magma mixing; UG2 chromitite  相似文献   

13.
Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, ~?39 ka and Neapolitan Yellow Tuff, NYT, ~?15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a “mature” (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge.  相似文献   

14.
Thirty separates of plagioclase, orthopyroxene and clinopyroxene from the lower Main Zone of the Northern Limb of the Bushveld Complex were analysed for their mercury contents using combustion atomic absorption spectroscopy with gold amalgamation pre-concentration. The average mercury contents of plagioclase, orthopyroxene and clinopyroxene were found to be 0.9 ppb, 1.2 ppb and 1.1 ppb, respectively. Mercury within the separates does not vary systematically with any of the major element oxides present in the minerals. Based on a positive 1:1 correlation between mercury in orthopyroxene and clinopyroxene, we estimate DOpxHg ≈ DCpxHg, and on this basis, can exclude the presence of significant Hg2+ within the melts from which these minerals crystallised. The lack of correlation between mercury in plagioclase and that in the mafic silicates may suggest diffusional loss of the element from the former during slow cooling under magmatic conditions and better retention of mercury by the mafic silicates under the same conditions. Alternatively and more likely, this lack of correlation may support earlier arguments based on distinct Sr-isotopic disequilibrium between co-existing plagioclase and mafic silicates, that plagioclase and the mafic silicates in the Northern Limb of the Bushveld Complex may have crystallised from different melts within a variably contaminated, sub-Bushveld staging chamber.  相似文献   

15.
Fe-rich tholeiitic liquids are preserved as chilled pillows and as the chilled base of a 27 meter thick macrorhythmic layer in the Pleasant Bay mafic-silicic layered intrusion. The compositions of olivine (Fo1) and plagioclase (An13−8) in these extremely fine grained rocks suggest that they represent nearly end stage liquids that formed by fractionation of tholeiitic basalt. Their major element compositions (∼17.5 wt% FeOT and 54 wt%SiO2) closely resemble highly evolved glasses in the Loch Ba ring dike and some recent estimates of end-stage liquids related to the Skaergaard layered intrusion, and are consistent with recent experimental studies of tholeiite fractionation. Their trace element compositions are consistent with extensive earlier fractionation of plagioclase, olivine, clinopyroxene, ilmenite, magnetite and apatite. The mineral assemblage of the chilled rocks (olivine, clinopyroxene, quartz, ilmenite and magnetite), apatite saturation temperatures, and very low Fe3+/Fe2+indicate conditions of crystallization at temperatures of about 950 °C and f O 2 about two log units below FMQ. Cumulates that lie about 3 meters above the chilled base of the macrorhythmic layer contain cumulus plagioclase, olivine, clinopyroxene, ilmenite, apatite and zircon. This mineral assemblage and the Fe-Mg ratio in clinopyroxene cores suggest that this cumulate was in equilibrium with a liquid having a composition identical to that of the chilled margin which lies directly beneath it. The high FeOT and low SiO2 concentrations of this cumulate (23.3 and 45.8 wt%, respectively) are comparable to those in late stage cumulates of the Skaergaard and Kiglapait intrusions. This association of a chilled liquid and cumulate in the Pleasant Bay intrusion suggests that late stage liquids in tholeiitic layered intrusions may have been more SiO2-rich than field-based models suggest and lends support to recent experimental studies of tholeiite fractionation at low f O2 which indicate that saturation of an Fe-Ti oxide phase should cause FeOT to decrease in the remaining liquid. Received: 17 January 1997 / Accepted: 10 June 1997  相似文献   

16.
We report in situ Sr isotope data for plagioclase of the Bushveld Complex. We found disequilibrium Sr isotopic compositions on several scales, (1) between cores and rims of plagioclase grains in the Merensky pyroxenite, the Bastard anorthosite, and the UG1 unit and its noritic footwall, (2) between cores of different plagioclase grains within thin sections of anorthosite and pyroxenite of the Merensky unit, the footwall anorthosite of the Merensky reef and the footwall norite of the UG1 chromitite. The data are consistent with a model of co-accumulation of cumulus plagioclase grains that had crystallized from different magmas, followed by late-stage overgrowth of the cumulus grains in a residual liquid derived from a different level of the compacting cumulate pile. We propose that the rocks formed through slumping of semi-consolidated crystal slurries at the top of the Critical Zone during subsidence of the center of the intrusion. Slumping led to sorting of crystals based on density differences, resulting in a layered interval of pyroxenites, norites and anorthosites.  相似文献   

17.
The layered Bushveld Complex hosts a number of chromitite layers, which were found to contain significant amounts of zircon grains compared with adjacent silicate rocks. Cathodoluminescent-dark, partially metamict cores and transparent rims of composite zircon grains were analyzed for trace elements with SIMS and LA-ICPMS techniques. The cores are enriched in REE, Y, Th and U and are characterized by distinctly flatter REE patterns in contrast to those of the rims and transparent homogenous crystals. Zircon from the different stratigraphic units has specific Th/U ratios, the highest of which (1.5–4) occurs in a Merensky Reef zircon core. The Ti content of Bushveld zircon ranges from 12 to 52 ppm correlating to a crystallization temperature range of 760–930 °C. The geochemical characteristics of the first zircon generation are consistent with its high-temperature crystallization as the first major U, Th and REE acceptor from a highly-evolved residue of the high-Mg basalt magma, whereas the rims and coreless crystals have crystallized from percolating intercumulus liquid of new influx of the same magma. U-Pb SHRIMP dating of zircon cores and rims does not reveal a distinguishable difference between their ages indicating the absence of inherited zircon. Concordia ages of 2,051?±?9 Ma (2σ, MSWD?=?0.1) and 2,056?±?5 Ma (2σ, MSWD?=?0.05) for zircons from the Merensky Reef and the Upper Platreef located equally near the top of the Critical Zone are in agreement with published ages for the Merensky Reef. Zircon from the deeper-seated Lower Group, Middle Group and Lower Platreef chromitites yields younger concordia ages that may reflect prolonged late-stage volatile activity.  相似文献   

18.
The 660 m thick Basistoppen sill is an Eocene, tholeiitic, layeredintrusion emplaced in the upper part of the Skaergaard complexshortly after solidification of the Skaergaard magma. Despiteits small size, the Basistoppen sill has one of the most extensivedifferentiation sequences known. The ranges of the solid solutionsin olivine, plagioclase, and pyroxene from the Basistoppen arecomparable to those in the Skaergaard and Bushveld intrusions.The rocks of the sill are orthocumulates composed of approximately35% trapped liquid and 65% cumulus minerals and can be dividedinto zones based on changes in the cumulus mineral assemblage.From the base upward those zones are: a Gabbro Picrite Zonecontaining cumulus olivine, Fe-Cr spinel, and minor biotite;a Bronzite Gabbro Zone containing cumulus orthopyroxene, Ca-richclinopyroxene, plagioclase, and minor Fe-Cr spinel; a PigeoniteGabbro Zone containing cumulus plagioclase, Ca-rich clinopyroxene,pigeonite, magnetite, and minor ilmenite; and a Fayalite DioriteZone containing cumulus plagioclase, Ca-rich clinopyroxene,magnetite, ilmenite, apatite, and olivine. The Basistoppen isoverlain by a zoned granophyre sill that was most likely derivedin part from the Basistoppen magma and in part from melted Precambriangneiss. The excellent exposure, uncomplicated structure, goodchilled margin, and lack of strong modal layering facilitatethe calculation of a differentiation trend for the Basistoppensill. During crystallization the Basistoppen magma became progressivelyricher in Fe, P, Na, K, Zn, Rb, Zr, La, Sm, and Th, became progressivelypoorer in Mg, Ca, Al, Cr, and Ni, and remained relatively unchangedin Si, Sc, and Sr through at least the first 90% of crystallization.  相似文献   

19.
Summary The Ulv? Gabbro Complex consists of alkali-olivine basaltic circular bodies ∼30–80 km in diameter. These intrusions were emplaced at shallow depths (∼3 km) as thin sheets (∼300 m). Among other things, the gabbroic cumulates of the complex display: modal layering, grain-size variations, trough structures, and slump structures. The crystallization sequence is olivine+plagioclase, ulv?spinel, clinopyroxene, and apatite. A nearly continuous exposure across one of these intrusions, the Norra Ulv?n gabbro, is subdivided into: a Lower Zone (LZ), a Rhythmically Layered Zone (RZ) and an Upper Zone (UZ). LZ and RZ were formed at the floor, while UZ grew from the roof downward. Major-element variations in the cores of the cumulus minerals define fractionation trends from the base of the intrusion to the RZ-UZ boundary interpreted as a “sandwich horizon”. Modeling suggests that a significant amount of crystallized interstitial liquid is required to produce the observed stratigraphic relations. Our results suggest that the small size and shallow emplacement depth of the intrusions of the Ulv? Gabbro Complex helped to preserve evidence of primary accumulation processes. However, it is also clear that despite the limited time available postcumulus processes such as diffusional homogenization and compaction of some grains were important. Correspondence: S. ?. Larson, Earth Sciences Centre, Department of Geology, G?teborg University, POB 460, SE 40530 G?teborg, Sweden  相似文献   

20.
Summary ¶Fine- to coarse-grained plutonic nodules within the Petrazza pyroclastics (Paleo-Stromboli I period) consist of gabbroic rocks with variable amounts of interstitial material. They are characterised by cumulate textures and low pressure modal mineralogy formed by plagioclase (An96–87)+clinopyroxene (Mg-v 82–94)+olivine (Fo83–74)±amphibole±opaque minerals; the interstitial material consists of newly crystallised microlites (quenching) of plagioclase (An73–55)+amphibole+clinopyroxene±olivine±biotite±opaques and highly variable amounts of residual glasses that range in composition from shoshonite and high-K basaltic andesite to high-K andesite and latite. The interstitial material has a relatively high but variable degree of vesicularity. The whole rock incompatible element abundances are lower than – but the patterns are typical of – in subduction related magmas and the incompatible trace-elements are well correlated with the amount of the interstitial material. The Sr, Pb and Nd isotopic ratios resemble those of the extrusive rocks of Stromboli older series and the mineral chemistry of the gabbros is similar to that of the HKCA Paleo-Stromboli lavas. Modal mineralogy, mineral chemistry and chemical-isotopic whole rock compositions suggest that the cumulus portions of the gabbroic nodules crystallised from basaltic magmas compositionally compatible with those erupted by Stromboli volcano. The interstitial material does not represent the residual liquid after in situ crystallisation of the gabbros; it is also distinct from the juvenile host andesite magma. Textural evidence, Fe–Mg mineral/liquid partioning and mass balance calculations indicate that the interstitial material (quench crystals and vesicular glass) derived from infiltrated hydrous basaltic liquid undercooling and vesiculation of which occurred during the eruption of the Petrazza pyroclastics.Received April 17, 2002; revised version accepted November 14, 2002 Published online June 2, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号