首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The petrogenesis of sodic island arc magmas at Savo volcano,Solomon Islands   总被引:2,自引:0,他引:2  
Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase–clinopyroxene–magnetite ± amphibole ± olivine) and trachytes (plagioclase–amphibole–magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.  相似文献   

2.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   

3.
A suite of hornblendite (amphibole proportion ≥90%) enclaves were found in Late Cretaceous diorite–porphyrite stocks intruding the lower Cretaceous coal strata around the Shuangyashan City, eastern Heilongjiang Province, Northeast China. The enclaves have similar mineralogy and may be divided into clinopyroxene-bearing and clinopyroxene-free hornblendites and both of them show cumulate textures: pargasitic amphibole and clinopyroxene are cumulus and anorthitic plagioclase is intercumulus. The accumulation might have occurred in the magma chamber, minor clinopyroxene enclosed in amphibole was earlier crystallized, followed by a large amount of amphibole, and the residual melt trapped between cumulate crystals finally formed the intercumulus plagioclase. Probably, such a crystallization process could produce layered cumulates: lower part is dominated by clinopyroxene-bearing hornblendite and upper part is composed of clinopyroxene-free one. The enclaves have similar geochemistry and imply a hydrous basaltic parental magma enriched Rb, Ba, Th and other large-ion lithophile elements. The generation of the parental magma might be related to the subduction of Paleo-Pacific plate beneath eastern Eurasian continent at that time. Estimated crystallization pressure, P-wave velocity, and density for the cumulate hornblendite enclaves are generally in agreement with the values of the local crust–mantle transition zone, suggesting that these cumulates may have the origin in the transition from the lower crust to upper mantle in arc and back-arc settings.  相似文献   

4.
Differentiation of mantle-derived, hydrous, basaltic magmas is a fundamental process to produce evolved intermediate to SiO2-rich magmas that form the bulk of the middle to shallow continental and island arc crust. This study reports the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas. Fractional crystallization was approached by synthesis of starting materials representing the liquid composition of the previous, higher temperature experiment. Temperatures ranged from near-liquidus at 1,170 °C to near-solidus conditions at 700 °C. H2O contents varied from 3.0 to more than 10 wt%. The liquid line of descent covers the entire compositional range from olivine–tholeiite (1,170 °C) to high-silica rhyolite (700 °C) and evolves from metaluminous to peraluminous compositions. The following crystallization sequence has been established: olivine → clinopyroxene → plagioclase, spinel → orthopyroxene, amphibole, titanomagnetite → apatite → quartz, biotite. Anorthite-rich plagioclase and spinel are responsible for a marked increase in SiO2-content (from 51 to 53 wt%) at 1,040 °C. At lower temperatures, fractionation of amphibole, plagioclase and Fe–Ti oxide over a temperature interval of 280 °C drives the SiO2 content continuously from 53 to 78 wt%. Largest crystallization steps were recorded around 1,040 °C and at 700 °C. About 40 % of ultramafic plutonic rocks have to crystallize to generate basaltic–andesitic liquids, and an additional 40 % of amphibole–gabbroic cumulate to produce granitic melts. Andesitic liquids with a liquidus temperature of 1,010 °C only crystallize 50 % over an 280 °C wide range to 730 °C implying that such liquids form mobile crystal mushes (<50 % crystals) in long-lived magmatic systems in the middle crust, allowing for extensive fractionation, assimilation and hybridization with periodic replenishment of more mafic magmas from deeper magma reservoirs.  相似文献   

5.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

6.
Gabbroic intrusions of the El-Aradiya area are a part of the Neoproterozoic basement cropping out in the central Eastern Desert of Egypt. They are composed mainly of gabbroic cumulates (diopside-plagioclase cumulate and plagioclase-augite cumulate) and fine-grained noncumulate gabbro. Mineral chemistry data indicate that the plagioclase core compositions of the gabbroic cumulates range between An90 and An60, whereas fine-grained noncumulate gabbro plagioclase core compositions are An61−56 and rim compositions are An54−42. The clinopyroxenes are diopside and augite in the gabbroic cumulate, and augite in the fine-grained noncumulate gabbro. Chemical re-equilibration between pyroxenes of gabbroic cumulates vary from 1150-900°C and for fine-grained noncumulate gabbro range from 1200-1100°C. The amphiboles are calcic, varying from tschermakite and tschermakitic hornblende, and Mg-hornblende in the gabbroic cumulate and only Mg-hornblende in the fine-grained noncumulate gabbro. They indicate an island-arc tholeiitic setting for gabbroic intrusions of the El-Aradiya area. Major and trace element data suggest arc tholeiite characters, a comagmatic suite and subduction-related magma with enrichment of LILE and depletion in HFSE relative to MORB. The estimated parent magma is similar to tholeiitic Aleutian arc primary magma. The gabbroic intrusions are analogous to intrusions emplaced in an immature island-arc setting in which the oceanic crust was thin.  相似文献   

7.
Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.  相似文献   

8.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

9.
Experiments in the system high-A1 basalt (HAB)-water have been conducted in the melting range at pressures between 1 atm. and 10 kbar, defining the amphibole stability field and the composition of liquids which coexist with this amphibole. Plagioclase is the anhydrous liquidus phase between 1 atm. and 10 kbar but in the hydrous runs this role is taken by olivine at <7 kbar and then by clinopyroxene at higher pressures. Because amphibole is never on the high-A1 basalt liquidus it is not likely that andesite is derived from primary basalt by pure fractional crystallisation, although as we discuss, other mechanisms including equilibrium crystallisation might implicate amphibole. If primary basaltic magma undergoes closed-system equilibrium crystallisation, then the amphibole field will be intersected at between 50 and 100°C below the liquidus. The compositions of melts coexisting with amphibole alone do not match those of any of the natural andesite or dacitic lavas associated with the particular high-A1 basalt investigated. Like natural andesites, they become rapidly silica enriched, but they also become far more depleted in TiO2 and MgO. However, the compositions of liquids lying directly on the divariant amphibole-out reaction zone, where amphibole +liquid coexist with clinopyroxene or olivine (±plagioclase), do resemble those of naturally occurring low-silica andesites. With increasing temperature pargasitic amphibole breaks down via incongruent melting reactions over a narrow temperature range to form a large volume of relatively low-silica basaltic andesite liquid and a crystalline assemblage dominated by either clinopyroxene or olivine. Our important conclusion is that basaltic andesite liquid will be the product of reaction between cooling, hydrous mafic liquid and anhydrous ferromagnesian phases. The solid reactants could represent earlier cumulates from the same or different magma batches, or they could be peridotite wall-rock material. Because the amphibole-out boundary coexisting with liquid is one of reaction, it will not be traversed so long as the phases on the high temperature side remain. Thus, the assemblage amphibole+clinopyroxene±olivine±plagioclase+liquid is one in which the liquid is buffered (within limits), and results reported here indicate that this buffering generates melts of low-silica andesite composition. When tapped to lower pressures these liquids will rise, eventually to fractionate plagioclase-rich assemblages yielding silicarich andesite and dacite melts. Conversely, the partial melting of hornblende pyroxenite, hornblende peridotite or hornblende gabbro can also yield basaltic andesite liquids. The phase relationships suggested by these experiments are discussed in the light of naturally occurring phenocryst and xenolith assemblages from the east Sunda Arc. Primary magmatic additions to the lithosphere of volcanic arcs are basaltic and voluminous upper crustal andesite in these terranes, complemented by mafic and ultramafic crystalline deposits emplaced in the lower crust or close to the Moho. Together these components constitute total arc growth with a basaltic composition and represent the net accreted contribution to continental growth.  相似文献   

10.
The petrogenesis of the Fiskenaesset anorthosite body has been investigated using major and trace element data for a large range of rock types from each zone of the complex. The chemistry of these ultramafic to anorthositic cumulates is interpreted in terms of crystal fractionation of a parental, trace element impoverished, tholeiitic magma, involving crystallisation of the cumulus phases olivine, orthopyroxene, clinopyroxene and (dominant) plagioclase feldspar. Amphibole appears not to have been a significant cumulus phase at any stage of crystallisation of the body, the abundant amphibole found in the rocks of the complex being produced by primary intercumulus crystallisation, supplemented by secondary metamorphic recrystallisation. Similarly, magnetite is unlikely to have been a significant early cumulus phase, although, together with chromite, it crystallised as a cumulus phase at high stratigraphic levels in the complex. The metamorphism appears to be largely isochemical, although sub-solidus metamorphic re-equilibration of the REE can be demonstrated on a grain-size scale.The spatial and temporal association between the anorthosite complex and the bordering metavolcanic amphibolites is matched by a strong similarity between the observed trace element chemistry of the amphibolites and the trace element chemistry of calculated successive liquids for the complex. This is taken to suggest a genetic relationship between the evolution of the anorthosite complex and enclosing amphibolites. The presence of trace element impoverished amphibolites (which are not cumulates) with trace element abundances comparable to those of the suggested parental liquid to the anorthosite complex, is used to derive a major element composition for the primary Fiskenasset magma. This composition approximates a moderately aluminous tholeiitic basalt, which may have been generated by hydrous fusion of previously depleted mantle. This primary magma underwent crystal fractionation under low pressure conditions, allowing the development of extensive plagioclase cumulates.The Fiskenaesset anorthosite, and similar bodies, cannot represent a cumulate residue complementary to the enclosing voluminous tonalitic gneisses, which have a calc-alkaline chemistry controlled by high pressure crystal liquid fractionation. Rather, the association between the cumulate layered complex and bordering supracrustal sequence may imply an ancient ocean crust analogue for the development of this component of Archaean high-grade terrains. It is suggested that slices of such Archaean ocean floor may be emplaced laterally into the base of the continental crust during subduction of oceanic lithosphere at Cordilleran type continental margins.  相似文献   

11.
A new model for Archaean granitoid magmatism is presented which reconciles the most important geochemical similarities and differences between tonalite–trondhjemite–granodiorite (TTG) and potassic granitoids. Trace element abundances reveal a strong arc magmatism signature in all studied granitoids from Barberton Mountain Land. Characteristic features include HFSE depletion as well as distinct enrichment peaks of fluid-sensitive trace elements such as Pb in N-MORB normalisation, clearly indicating that all studied granitoids are derived from refertilised mantle above subduction zones. We envisage hydrous basaltic (s.l.) melts as parental liquids, which underwent extensive fractional crystallisation. Distinctive residual cumulates evolved depending on initial water content. High-H2O melts crystallised garnet/amphibole together with pyroxenes and minor plagioclase, but no olivine. This fractionation path ultimately led to TTG-like melts. Less hydrous basaltic melts also crystallised garnet/amphibole, but the lower compatible element content indicates that olivine was also a liquidus phase. Pronounced negative Eu-anomalies of the granitic melts, correlating with Na, Ca and Al, indicate plagioclase to be of major importance. In the context of our model, the post-Archaean disappearance of TTG and concomitant preponderance of granites (s.l.), therefore, is explained with secular decrease of aqueous fluid transport into subduction zones and/or efficiency of deep fluid release from slabs.  相似文献   

12.
Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia’s most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007–2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47–94), orthopyroxene (En64–72, Fs24–32, Wo2–4), clinopyroxene (En40–48, Fs14–19, Wo34–46), Ti-magnetite (Usp16–34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6.5 to 7.6 ‰, respectively. A single whole rock analysis of the 2007–2008 dome lava gave a δ18O value of 7.6 ‰, whereas meta-basaltic and calc-silicate xenoliths are characterised by δ18O values of 6.2 and 10.3 ‰, respectively. Magmatic δ18O values calculated from individual pyroxene and plagioclase analyses range from 5.7 to 7.0 ‰, and 6.2 to 7.4 ‰, respectively. This range in O-isotopic compositions is explained by crystallisation of pyroxenes in the lower to mid-crust, where crustal contamination is either absent or masked by assimilation of material having similar δ18O values to the ascending melts. This population is mixed with isotopically distinct plagioclase and pyroxenes that crystallised from a more contaminated magma in the upper crustal system. Binary bulk mixing models suggest that shallow-level, recycled volcaniclastic sedimentary rocks together with calc-silicates and/or limestones are the most likely contaminants of the 2007–2008 Kelut magma, with the volcaniclastic sediments being dominant.  相似文献   

13.
Summary Crust-derived xenoliths hosted by Miocene basaltic diatremes in the Hyblean Plateau (south-eastern Sicily, Italy) provide new information regarding the nature of a portion of the central Mediterranean lower crust. These xenoliths can be divided into three groups: gabbros (plagioclase + clinopyroxene + Fe–Ti oxides ± apatite ± amphibole ± Fe-rich green spinel), diorites (An-poor plagioclase, clinopyroxene ± Fe–Ti oxides ± orthopyroxene) and mafic granulites (plagioclase + clinopyroxene + green spinel ± orthopyroxene ± Fe–Ti oxides). Gabbros form the main subject of this paper. They represent cumulates whose igneous texture has been locally obliterated by metamorphic recrystallization and shearing. They were permeated by Fe–Ti-rich melts related to tholeiitic-type fractional crystallisation. Incompatible element ratios (Zr/Nb = 5–26; Y/Nb = 1.4–11) indicate that these cumulate gabbros derived from MORB liquids. Late-stage and hydrothermal fluids caused diverse, sometimes important, metasomatic trasformations. Petrographic and geochemical comparison with gabbroids from well-known geodynamic settings show that the Hyblean lower crustal xenoliths were probably formed in an oceanic or oceanic-continent transition environment.  相似文献   

14.
Chromite deposits in the northern Oman ophiolite: Mineralogical constraints   总被引:1,自引:0,他引:1  
Chromite deposits in the northern Oman ophiolitic complex occur in three structural contexts, i.e., (1) at the base of the cumulate series, (2) in the top kilometer of the mantle sequence, and (3) in the deeper parts of the mantle. Types 1 and 2 are characterized by the diversity of interstitial silicates where in decreasing order of abundance olivine, clinopyroxene, orthopyroxene, plagioclase, and amphibole occur, as opposed to type 3 which contains only olivine. They differ however in ore texture. Similar silicates also occur as euhedral inclusions in chromite crystals, but their proportions are reversed. The composition of the interstitial silicates is comparable to that found in early cumulates. Type-1 and type-2 chromite deposits crystallized from a magma similar to that from which the basal cumulates formed (Al2O3, 15.1–16.1 wt%; FeO/MgO, 0.55–0.60). The type-3 chromites were derived from a magma of much lower Al2O3 content (12.5 wt%). It is considered that they belong to an older episode in the magmatic evolution of the complex.  相似文献   

15.
 We have investigated new samples from the Gees mantle xenolith suite (West Eifel), for which metasomatism by carbonatite melt has been suggested. The major metasomatic change is transformation of harzburgites into phlogopite-rich wehrlites. Silicate glasses are associated with all stages of transformation, and can be resolved into two major groups: a strongly undersaturated alkaline basanite similar to the host magma which infiltrated the xenoliths during ascent, and Si-Al-enriched, variably alkaline glass present exclusively within the xenoliths. Si-Al-rich glasses (up to 72 wt% SiO2 when associated with orthopyroxene (Opx) are usually interpreted in mantle xenoliths as products of decompressional breakdown of hydrous phases like amphibole. In the Gees suite, however, amphibole is not present, nor can the glass be related to phlogopite breakdown. The Si-Al-rich glass is compositionally similar to glasses occurring in many other xenolith suites including those related to carbonatite metasomatism. Petrographically the silicate glass is intimately associated with the metasomatic reactions in Gees, mainly conversion of harzburgite orthopyroxene to olivine + clinopyroxene. Both phases crystallize as microlites from the glass. The chemical composition of the Si-Al-enriched glass shows that it cannot be derived from decompressional melting of the Gees xenoliths, but must have been present prior to their entrainment in the host magma. Simple mass-balance calculations, based on modal analyses, yield a possible composition of the melt prior to ascent of the xenoliths, during which glass + microlite patches were modified by dissolution of olivine, orthopyroxene and spinel. This parental melt is a calc-alkaline andesite (55–60 wt% SiO2), characterized by high Al2O3 (ca. 18 wt%). The obtained composition is very similar to high-alumina, calc-alkaline melts that should form by AFC-type reactions between basalt and harzburgite wall rock according to the model of Kelemen (1990). Thus, we suggest that the Si-Al-enriched glasses of Gees, and possibly of other suites as well, are remnants of upper mantle hybrid melts, and that the Gees suite was metasomatized by silicate and not carbonatite melts. High-Mg, high-Ca composition of metasomatic olivine and clinopyroxene in mantle xenoliths have been explained by carbonatite metasomatism. As these features are also present in the Gees suite, we have calculated the equilibrium Ca contents of olivine and clinopyroxene using the QUI1F thermodynamical model, to show that they are a simple function of silica activity. High-Ca compositions are attained at low a SiO2 and can thus be produced during metasomatism by any melt that is Opx-undersaturated, irrespective of whether it is a carbonatite or a silicate melt. Such low a SiO2 is recorded by the microlites in the Gees Si-Al-rich glasses. Our results imply that xenolith suites cannot confidently be related to carbonatite metasomatism if the significance of silicate glasses, when present, is not investigated. Received: 2 March 1995 / Accepted: 12 June 1995  相似文献   

16.
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.  相似文献   

17.
The Kurancali ultramafic-mafic cumulate body, an allochthonous ophiolitic sliver in central Anatolia, is characterized by the presence of abundant hydrous phases (phlogopite, pargasite) besides augitic diopside, plagioclase, and accessory amounts of rutile, sphene, apatite, zircon, and calcite. Based on modes of the essential minerals, the olivine-orthopyroxene-free cumulates are grouped as clinopyroxenite, hydrous clinopyroxenite, phlogopitite, hornblendite, layered gabbro, and diorite. Petrographical, mineralogical and geochemical features of the rocks infer crystallization from a hydrous magma having high-K calc-alkaline affinity with slightly alkaline character, and point to metasomatised mantle as the magma source. Our evidence implies that the metasomatising component, which modified the composition of the mantle wedge source rock in an intra-oceanic subduction zone, was a H2O, alkali and carbonate-rich aluminosilicate fluid and/or melt, probably derived from a subducted slab. We suggest that the metasomatic agents in the subarc mantle led to the generation of a hydrous magma, which produced the Kurancali cumulates in an island-arc basement in a supra-subduction-zone setting during the closure of the Izmir-Ankara-Erzincan branch of the Alpine Neotethys Ocean.  相似文献   

18.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

19.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   

20.
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates; Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号