首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rb-Sr isochron age of igneous ankerite-calcite and siderite carbonatites in central Tuva is estimated at 118 ± 9 Ma. The following ranges of initial values of O, C, Sr, and sulfide and S isotopic compositions were established: δ18Ocarb = +(8.8?14.7)‰, δ13Ccarb = ?(3.6?4.9)‰, δ18Oquartz = +(11.6?13.7)‰, δ34Spyrite = +(0.3?1.1)‰, and (87Sr/86Sr)i =0.7042?0.7048 for ankerite-calcite carbonatite and δ18Osid = +(9.2?12.4)‰, δ13Csid = ?(3.9?5.9)‰, δ18Oquartz = +(11.2?11.4)‰, δ34Spyrite = ?(4.4–1.8)‰, δ34Ssulfate = +(8.6?14.5)‰, and (87Sr/86Sr)i = 0.7042?0.7045 for siderite carbonatite. The obtained isotopic characteristics indicate that both varieties of carbonatites are cognate and their mantle source is comparable with the sources of Late Mesozoic carbonatites in the western Transbaikal region and Mongolia. The revealed heterogeneity of isotopic compositions of carbonatites is caused by their contamination with country rocks, replacement with hydrothermal celestine, and supergene alteration.  相似文献   

2.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

3.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

4.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

5.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

6.
This paper presents a study of the petrography, mineral chemistry, geochemistry, and Sr–Nd–Pb–C–O isotope systematics of carbonatite dykes and associated rocks from the northeastern part of the Song Da intracontinental rift in South Nam Xe (northwest Vietnam) aimed at constraining the origin of the carbonatite magmas. The carbonatites are characterized by SiO2 < 12.18 wt.% and by wide ranges in FeO, MgO and CaO content that define them as calciocarbonatite and ferrocarbonatite. On U–Th–Pb isochron diagrams, whole rocks and mineral separates from the ferrocarbonatites form linear arrays corresponding to ages of 30.2–31.6 Ma (Rupelian, Oligocene). The South Nam Xe carbonatites are extremely enriched in Sr, Ba, and light rare earth elements (LREE), and depleted in high field strength elements (HFSE) (e.g. Ti, Nb, Ta, Zr and Hf). The age–corrected Sr–Nd–Pb isotope ratios and C isotope data are relatively uniform (87Sr/86Sr(t) = 0.708193–0.708349; 143Nd/144Nd(t) = 0.512250–0.512267; εNd(t) = ?6.46 to ?6.80; 206Pb/204Pb(t) = 18.26–18.79; 207Pb/204Pb(t) = 15.62–15.64; 208Pb/204Pb(t) = 38.80–39.38; δ13CV-PDB = –2.7?‰ to ?4.1?‰). These isotopic compositions indicate source contamination that occurred before the production of the carbonatite magmas, and did not change noticeably during or after emplacement. The variation in oxygen isotopes is consistent with the change in mineral compositions and trace element abundances: the lower δ18O values (9.1–11.0?‰) coupled with Sr-rich, Mn-poor calcite, and igneous textures such as triple junctions among calcite grain boundaries, define a magmatic origin. However, the elevated δ18O values of the ferrocarbonatites (12.0–13.3?‰) coupled with a volatile-bearing mineral assemblages (including REE fluorcarbonates, sulfates, sulfides and fluorite) may be due to interaction with meteoric water during low-temperature alteration. High δ13C values and Sr–Pb ratios, and low Rb/Sr (0.00014–0.00301), Sm/Nd (0.089–0.141) and 143Nd/144Nd ratios, coupled with very high Sr-Nd concentrations, suggest the involvement of an enriched mantle component, which probably resulted from metasomatism due to the migration of subducted material. Because of the lack of tectonic data and the limited number of samples studied, this conclusion is still ambiguous and requires further study.  相似文献   

7.
Theδ18O (SMOW) values of the Kirkpatrick Basalt (Jurassic) on Mt. Falla, Queen Alexandra Range, vary between +6.3‰ and +8.6‰ The apparent enrichment of these rocks in18O excludes the possibility that they were altered by interaction with aqueous solutions of meteoric origin. Theδ18O values of the flows correlate significantly with the initial87Sr/86Sr ratios and all major elements. These correlations confirm the hypothesis that the basalt magma was contaminated by rocks of the continental crust through which it was extruded. Estimates of the chemical composition of the basalt magma and the contaminant, based on extrapolations of the new oxygen data, generally confirm earlier estimates based on extrapolations of initial87Sr/86Sr ratios. The87Sr/86Sr ratio of the uncontaminated basalt was 0.7093 which indicates that magma may have originated by melting either in old Rb-enriched lithospheric mantle under Antarctica or in the overlying crust, or both.  相似文献   

8.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

9.
《International Geology Review》2012,54(12):1461-1480
ABSTRACT

The South Indian Granulite Terrane (SGT) is a collage of Archaean to Neoproterozoic age granulite facies blocks that are sutured by an anastomosing network of large-scale shear systems. Besides several Neoproterozoic carbonatite complexes emplaced within the Archaean granulites, there are also smaller Paleoproterozoic (2.4 Ga, Hogenakkal) carbonatite intrusions within two NE-trending pyroxenite dikes. The Hogenakkal carbonatites, further discriminated into sövite and silicate sövite, have high Sr and Ba contents and extreme light rare earth element (LREE) enrichment with steep slopes typical of carbonatites. The C- and O-isotopic ratios [δ13CVPDB = ?6.7 to ?5.8‰ and δ18OVSMOW = 7.5–8.7‰ except a single 18O-enriched sample (δ18O = 20.0‰)] represent unmodified mantle compositions. The εNd values indicate two groupings for the Hogenakkal carbonatites; most samples show positive εNd values, close to CHUR (εNd = ?0.35 to 2.94) and named high-εNd group while the low-εNd group samples show negative values (?5.69 to ?8.86), corresponding to depleted and enriched source components, respectively. The 87Sr/86Sri ratios of the two groups also can be distinguished: the high-εNd ones have low 87Sr/86Sri ratios (0.70161–0.70244) while the low-εNd group shows higher ratios (0.70247–0.70319). We consider the Nd–Sr ratios as primary and infer derivation from a heterogeneous mantle source. The emplacement of the Hogenakkal carbonatites may be related to Paleoproterozoic plume induced large-scale rifting and fracturing related to initiation of break-up of the Neoarchean supercontinent Kenorland.  相似文献   

10.
The Yungul carbonatite dykes at Speewah in the Kimberley region of Western Australia were emplaced along a north-trending splay from the northeast-trending Greenvale Fault located at the western boundary of the Halls Creek Orogen. The Yungul carbonatite dykes intrude a thick composite sill of the Palaeoproterozoic Hart Dolerite (~1,790 Ma), consisting of tholeiitic dolerite and gabbro with its felsic differentiates that form the Yilingbun granophyres and associated granites. The carbonatite dykes consist of massive, calcite carbonatite that host very coarse, pegmatitic veins and pods of calcite, and have largely replaced (carbonatitized) and fenitized the country rock Hart Dolerite suite in a zone up to 150 m wide. Dykes of red-brown siliceous fluidized-breccia and epithermal-textured veins consisting of bladed quartz, adularia and fluorite are closely associated with the carbonatite dykes. The Yungul carbonatites are closely associated with fluorite occurrences with resources currently reported as 6.7 Mt at 24.6% CaF2. The precise age of the Yungul carbonatite is not known, although it is believed to be post early Cambrian. The total REE content of the Yungul carbonatite is low (174.0–492.8 ppm; La/Yb 2.28–10.74) and thus atypical for calciocarbonatite. Chondrite-normalized REE patterns for the carbonatite are relatively flat compared to average calciocarbonatite, and show small negative Eu anomalies. These unusual geochemical features may have been acquired from the Hart Dolerite suite during emplacement of the carbonatite, a process that involved extensive replacement and fenitization of country rocks. Carbon and oxygen isotope compositions of massive calcite carbonatite and the coarse calcite veins and pods from the carbonatite suggest a deep-seated origin. The C and O isotope compositions show an overall positive correlation that can be attributed to both magmatic and magmatic-hydrothermal processes in their evolution. The magmatic δ13C-δ18O trend is also indicative of crustal contamination and/or low-temperature water/rock exchange. The carbon isotopic compositions have δ13C values that range from about ?5.2‰ to ?6.3‰ that support a mantle-derived origin for the Yungul carbonatites and are consistent with earlier conclusions based on whole-rock geochemistry and radiogenic isotopes studies.  相似文献   

11.
呈层状、似层状产于震旦系灯影组角砾状白云岩层间构造带中的马元铅锌矿床是近年来在扬子陆块北缘铅锌找矿的新突破。文章通过碳、氧、氢、硫、铅和锶同位素地球化学特征研究,探讨了成矿流体和成矿金属来源。研究结果表明:矿石中热液脉石矿物的δ13CPDB为-4.24‰~0.93‰,δ18OSMOW为15.92‰~23.24‰,表明成矿流体中的CO2为震旦系碳酸盐岩的溶解成因。矿石中硫化物的δ34S变化于12.94‰~19.4‰之间;硫酸盐矿物的δ34S为32.2‰~33.48‰,表明还原硫主要来自地层中海相硫酸盐的还原。矿石硫化物的铅同位素组成均一,206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为17.62~18.02、15.49~15.63和37.57~38.35,成矿金属可能主要来源于震旦系—志留系。脉石矿物石英流体包裹体的δDFI为-92‰和-113‰,如果取成矿温度200℃,根据δ18O石英值计算的相应流体包裹体的δ18O水为6.03‰~12.73‰,推测成矿流体可能起源于大气降水为主的盆地卤水,或为其他来源的流体与有机质反应形成。成矿流体87Sr/86Sr为0.70967~0.71146,高于赋矿围岩震旦系灯影组白云岩锶同位素比值(0.70890~0.70945),表明成矿流体流经了古生代地层(及基底),并与其中具有高锶同位素比值的碎屑岩、页岩和泥岩等进行了水岩反应及同位素交换。  相似文献   

12.
A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites. Editorial responsibility: W. Schreyer  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987110000125   总被引:3,自引:0,他引:3  
<正>Carbonatites are commonly related to the accumulation of economically valuable substances such as REE.Cu,and P.The debate over the origin of carbonatites and their relationship to associated silicate rocks has been ongoing for about 45 years.Worldwide,the rocks characteristically display more geochemical enrichments in Ba,Sr and REE than sedimentary carbonate rocks.However,carbonatite's geochemical features are disputed because of secondary mineral effects.Rock-forming carbonates from carbonatites at Qinling.Panxi region,and Bayan Obo in China show REE distribution patterns ranging from LREE enrichment to flat patterns.They are characterized by a Sr content more than 10 times higher than that of secondary carbonates.The coarse- and fine-grained dolomites from Bayan Obo H8 dolomite marbles also show similar high Sr abundance,indicating that they are of igneous origin.Some carbonates in Chinese carbonatites show REE(especially HREE) contents and distribution patterns similar to those of the whole rocks.These intrusive carbonatites display lower platinum group elements and stronger fractionation between Pt and Ir relative to high-Si extrusive carbonatite.This indicates that most intrusive carbonatites may be carbonate cumulates.Maoniuping and Daluxiang in Panxi region are large REE deposits.Hydrothermal fluorite ore veins occur outside of the carbonatite bodies and are emplaced in wallrock syenite.The fiuorite in Maoniuping has Sr and Nd isotopes similar to carbonatite.The Daluxiang fiuorite shows Sr and REE compositions different from those in Maoniuping.The difference is reflected by both the carbonatites and rock-forming carbonates,indicating that REE mineralization is related to carbonatites.The cumulate processes of carbonate minerals make fractionated fluids rich in volatiles and LREE as a result of low partition coefficients for REE between carbonate and carbonatite melt and an increase from LREE to HREE.The carbonatite-derived fluid has interacted with wallrock to form REE ore veins.The amount of carbonatite dykes occurring near the Bayan Obo orebodies may support the same mineralization model,i.e.that fluids evolved from the carbonatite dykes reacted with H8 dolomite marble,and thus the different REE and isotope compositions of coarse- and fine-grained dolomite may be related to reaction processes.  相似文献   

14.
White micas in carbonate-rich tectonites and a few other rock types of large thrusts in the Swiss Helvetic fold-and-thrust belt have been analyzed by 40Ar/ 39Ar and Rb/Sr techniques to better constrain the timing of Alpine deformation for this region. Incremental 40Ar/ 39Ar heating experiments of 25 weakly metamorphosed (anchizone to low greenschist) samples yield plateau and staircase spectra. We interpret most of the staircase release spectra result from variable mixtures of syntectonic (neoformed) and detrital micas. The range in dates obtained within individual spectra depends primarily on the duration of mica nucleation and growth, and relative proportions of neoformed and detrital mica. Rb/Sr analyses of 12 samples yield dates of ca. 10–39 Ma (excluding one anomalously young sample). These dates are slightly younger than the 40Ar/ 39Ar total gas dates obtained for the same samples. The Rb/Sr dates were calculated using initial 87Sr/ 86Sr ratios obtained from the carbonate-dominated host rocks, which are higher than normal Mesozoic carbonate values due to exchange with fluids of higher 87Sr/ 86Sr ratios (and lower 18O/ 16O ratios). Model dates calculated using 87Sr/ 86Sr values typical of Mesozoic marine carbonates more closely approximate the 40Ar/ 39Ar total gas dates for most of the samples. The similarities of Rb/Sr and 40Ar/ 39Ar total gas dates are consistent with limited amounts of detrital mica in the samples. The d 18O values range from 24–15‰ (VSMOW) for 2–6 µm micas and 27–16‰ for the carbonate host rocks. The carbonate values are significantly lower than their protolith values due to localized fluid-rock interaction and fluid flow along most thrust surfaces. Although most calcite-mica pairs are not in oxygen isotope equilibrium at temperatures of ca. 200–400 °C, their isotopic fractionations are indicative of either 1) partial exchange between the minerals and a common external fluid, or 2) growth or isotopic exchange of the mica with the carbonate after the carbonate had isotopically exchanged with an external fluid. The geological significance of these results is not easily or uniquely determined, and exemplifies the difficulties inherent in dating very fine-grained micas of highly deformed tectonites in low-grade metamorphic terranes. Two generalizations can be made regarding the dates obtained from the Helvetic thrusts: 1) samples from the two highest thrusts (Mt. Gond and Sublage) have all of their 40Ar/ 39Ar steps above 20 Ma, and 2) most samples from the deepest Helvetic thrusts have steps (often accounting for more than 80% of 39Ar release) between 15 and 25 Ma. These dates are consistent with the order of thrusting in the foreland-imbricating system and increase proportions of neoformed to detrital mica in the more metamorphosed hinterland and deeply buried portions of the nappe pile. Individual thrusts accommodated the majority of their displacement during their initial incorporation into the foreland-imbricating system, and some thrusts remained active or were reactivated down to 15 Ma.  相似文献   

15.
The paper presents mineralogical features and EPMA results of the Khamambettu carbonatites. The mineralogical data suggest that these rocks have been generated in magmatic and hydrothermal stages. Mineral geothermometer for carbonatite give temperatures of 790°–980°C. Fluid inclusion measurements in monazite (hydrothermal stage) give temperatures of 220°–290°C. One of the features of the carbonatites is high content of magnesia that is defined by the presence of dolomite, olivine, spinel, phlogopite, Mg-rich ilmenite. Chloritization, serpentinization, amphibolization, silicification processes and occurrence of barite, monazite-(Ce), strontianite, celestine are related to hydrothermal stage. Hydrothermal minerals at the Khamambettu were formed by recrystallization of primary carbonatite minerals in the presence of Ba, (SO4)2?, REE and Si carried in solution by the hydrothermal fluid.  相似文献   

16.
白云鄂博富稀土元素碳酸岩墙的 碳和氧同位素特征   总被引:7,自引:0,他引:7  
重点解剖了一条距白云鄂博超大型REE-Nb-Fe矿床东矿北东方向2 k m、切割白云鄂 博群H1及H3岩性段的细粒方解石碳酸岩岩墙的碳和氧同位素地球化学特征。结果表明,碳酸 岩的碳同位素组成变化范围较小(δ13C值为-6.6‰ ~ -4.6‰),与正常地幔碳δ 13C值-5±2‰一致;而氧同位素组成变化范围较大(δ18O值为11.9‰~17.7‰ ),显著高于地幔的δ18O值5.7±1.0‰,表明碳酸岩浆在结晶过程中或之后曾与 低 温热液流体发生了同位素交换。碳酸岩墙中白云石与方解石之间的碳和氧同位素分馏均小于 0‰,处于不平衡状态,说明该碳酸岩墙中的白云石与方解石并非同成因矿物,白云石可能 为次生成因的。  相似文献   

17.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

18.
The Swan Hills Formation (Middle-Upper Devonian) of the Western Canada Basin is host to several NW-SE-trending gas fields developed in massive replacement dolostone. One of these, the Rosevear Field, contains two major dolostone trends along opposing margins of a marine channel that penetrates into a platform-reef complex. Dolostones consist predominantly of branching and bulbous strdmatoporoid floatstones and rudstones with well-developed moldic and vuggy porosity. Replacement dolomite is coarsely crystalline (100-600 μm), inclusion-rich, composed of euhedral through anhedral crystals and has a blotchy to homogeneous red cathodoluminescence. Geochemically, replacement dolomite is characterized by (i) nearly stoichiometric composition (50.1-51.1 mol% CaCO3), (ii) negative δ18O values (mean=-7.5‰, PDB) and (iii) variable 87Sr/86Sr ratios ranging from values similar to Late Devonian-Early Mississippian seawater (~0.7082) to radiogenic compositions comparable to saddle dolomite cements (>0.7100). Dolomitization began after widespread precipitation of early, equant calcite spar and after the onset of pressure solution, implying that replacement dolomite formed in a burial environment. Oxygen isotope data suggest that dolomite formed at 35-75°C, temperatures reached during burial in Late Devonian through Jurassic time, at minimum depths of 450 m. The linear NW-SE orientation of most dolomite fields in the Swan Hills Formation is suggestive of fault control on fluid circulation. Two models are proposed for fault-controlled circulation of dolomitizing fluids at the Rosevear Field. In the first, compaction-driven, updip fluid migration occurred in response to basin tilting commencing in the Late Palaeozoic. Deep basinal fluids migrating updip were focused into channel-margin sediments along fault conduits. The second model calls upon fault-controlled convective circulation of (i) warm Devonian-Mississippian seawater or (ii) Middle Devonian residual evaporitic brines. The overlap in 87Sr/86Sr and δ18O compositions, and similar cathodoluminescence properties between replacement and saddle dolomites provide evidence for neomorphism of some replacement dolomite. Quantitative modelling of Sr and O isotopes and Sr abundances suggests partial equilibration of some replacement dolomite with hot radiogenic brines derived during deep burial of the Swan Hills Formation in the Late Cretaceous-Palaeocene. Interaction of replacement dolomite with deep brines led to enrichment in 87Sr while leaving δ18O similar to pre-neomorphism values.  相似文献   

19.
HAIRUO Qing 《Sedimentology》1998,45(2):433-446
The petrography and geochemistry of fine- and medium-crystalline dolomites of the Middle Devonian Presqu’ile barrier at Pine Point (Western Canada Sedimentary Basin) are different from those of previously published coarse-crystalline and saddle dolomites that are associated with late-stage hydrothermal fluids. Fine-crystalline dolomite consists of subhedral to euhedral crystals, ranging from 5 to 25 μm (mean 8 μm). The dolomite interbedded with evaporitic anhydrites that occur in the back-barrier facies in the Elk Point Basin. Fine-crystalline dolomite has δ18Ο values between ?1·6 to –3·8‰ PDB and 87Sr/86Sr ratios from 0·7079–0·7081, consistent with derivation from Middle Devonian seawater. Its Sr concentrations (55–225 p.p.m., mean 105 p.p.m.) follow a similar trend to modern Little Bahama seawater dolomites. Its rare earth element (REE) patterns are similar to those of the limestone precursors. These data suggest that this fine-crystalline dolomite formed from Middle Devonian seawater at or just below the sea floor. Medium-crystalline dolomite in the Presqu’ile barrier is composed of anhedral to subhedral crystals (150–250 μm, mean 200 μm), some of which have clear rims toward the pore centres. This dolomite occurs mostly in the southern lower part of the barrier. Medium-crystalline dolomite has δ18O values between ?3·7 to ?9·4‰ PDB (mean ?5·9‰ PDB) and 87Sr/86Sr ratios from 0·7081–0·7087 (mean 0·7084); Sr concentrations from 30 to 79 p.p.m. (mean 50 p.p.m.) and Mn content from 50 to 253 p.p.m. (mean 161 p.p.m.); and negative Ce anomalies compared with those of marine limestones. The medium-crystalline dolomite may have formed either (1) during shallow burial at slightly elevated temperatures (35–40 °C) from fluids derived from burial compaction, or, more likely (2) soon after deposition of the precursor sediments by Middle Devonian seawater derived from the Elk Point Basin. These results indicate that dolomitization in the Middle Devonian Presqu’ile barrier occurred in at least two stages during evolution of the Western Canada Sedimentary Basin. The geochemistry of earlier formed dolomites may have been modified if the earlier formed dolomites were porous and permeable and water/rock ratios were large during neomorphism.  相似文献   

20.
This paper describes the occurrence of dolomite and the mechanism of dolomitization of the Upper Triassic-Lower Jurassic K?z?loren Formation in the autochthonous Bolkardag? unit of the middle Taurus Mountains in south western Turkey. Dolomites were analyzed for geochemical, isotopic and crystallographic variation. Dolomites occur as a replacement of precursor carbonate and cement. The dolomite crystals range from <10 to ~1000 μm existing as both replacements and cements. Sr concentrations range between 84 and 156 ppm, and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 0.0066 to 0.013 ratios. Dolomites are Ca-rich (with average CaCO3 and MgCO3 equal to 56.43 and 43.57 mol%, respectively) and they are non-stoichiometric, with an average Sr=116 ppm, Na=286 ppm, Mn=81 ppm, Fe=1329 ppm, and δ18O and δ13C ranges from –0.6‰ to –6.1‰ Pee Dee Belemnite [PDB], and +1.2 to +3.9‰ PDB. The North American Shale Composition [NASC]-normalized rare earth element (REE) values of the both limestone and dolomite sample groups show very similar REE patterns characterized by small positive Eu (mean=1.32 and mean=1.42, respectively) and slightly or considerably negative Ce (mean=0.61 and mean=0.72, respectively) anomalies and a clear depletion in all REE species. The K?z?loren Formation dolomites have been formed as early diagenetic from mixing zone fluids at the tidal-subtidal environment and at the late diagenetic from basinal brines at the shallow-deep burial depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号