首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenocryst assemblages of lavas from the long-lived Aucanquilcha Volcanic Cluster (AVC) have been probed to assess pressure and temperature conditions of pre-eruptive arc magmas. Andesite to dacite lavas of the AVC erupted throughout an 11-million-year, arc magmatic cycle in the central Andes in northern Chile. Phases targeted for thermobarometry include amphibole, plagioclase, pyroxenes, and Fe–Ti oxides. Overall, crystallization is documented over 1–7.5 kbar (~25 km) of pressure and ~680–1,110 °C of temperature. Pressure estimates range from ~1 to 5 kbar for amphiboles and from ~3 to 7.5 kbar for pyroxenes. Pyroxene temperatures are tightly clustered from ~1,000–1,100 °C, Fe–Ti oxide temperatures range from ~750–1,000 °C, and amphibole temperatures range from ~780–1,050 °C. Although slightly higher, these temperatures correspond well with previously published zircon temperatures ranging from ~670–900 °C. Two different Fe–Ti oxide thermometers (Andersen and Lindsley 1985; Ghiorso and Evans 2008) are compared and agree well. We also compare amphibole and amphibole–plagioclase thermobarometers (Ridolfi et al. 2010; Holland and Blundy 1994; Anderson and Smith 1995), the solutions from which do not agree well. In samples where we employ multiple thermometers, pyroxene temperature estimates are always highest, zircon temperature estimates are lowest, and Fe–Ti oxide and amphibole temperature estimates fall in between. Maximum Fe–Ti oxide and zircon temperatures are observed during the middle stage of AVC activity (~5–3 Ma), a time associated with increased eruption rates. Amphibole temperatures during this time are relatively restricted (~850–1,000 °C). The crystal record presented here offers a time-transgressive view of an evolving, multi-tiered subvolcanic reservoir. Some crystals in AVC lavas are likely to be true phenocrysts, but the diversity of crystallization temperatures and pressures recorded by phases in individual AVC lavas suggests erupting magma extensively reams and accumulates crystals from disparate levels of the middle to upper crust.  相似文献   

2.
Amphibole has been discussed to potentially represent an important phase during early chemical evolution of arc magmas, but is not commonly observed in eruptive arc rocks. Here, we present an in-depth study of metastable calcic amphibole megacrysts in basaltic andesites of Merapi volcano, Indonesia. Radiogenic Sr and Nd isotope compositions of the amphibole megacrysts overlap with the host rock range, indicating that they represent antecrysts to the host magmas rather than xenocrysts. Amphibole-based barometry suggests that the megacrysts crystallised at pressures of >500 MPa, i.e., in the mid- to lower crust beneath Merapi. Rare-earth element concentrations, in turn, require the absence of magmatic garnet in the Merapi feeding system and, therefore, place an uppermost limit for the pressure of amphibole crystallisation at ca. 800 MPa. The host magmas of the megacrysts seem to have fractionated significant amounts of amphibole and/or clinopyroxene, because of their low Dy/Yb ratios relative to the estimated compositions of the parent magmas to the megacrysts. The megacrysts’ parent magmas at depth may thus have evolved by amphibole fractionation, in line with apparently coupled variations of trace element ratios in the megacrysts, such as e.g., decreasing Zr/Hf with Dy/Yb. Moreover, the Th/U ratios of the amphibole megacrysts decrease with increasing Dy/Yb and are lower than Th/U ratios in the basaltic andesite host rocks. Uranium in the megacrysts’ parent magmas, therefore, may have occurred predominantly in the tetravalent state, suggesting that magmatic fO2 in the Merapi plumbing system increased from below the FMQ buffer in the mid-to-lower crust to 0.6–2.2 log units above it in the near surface environment. In addition, some of the amphibole megacrysts experienced dehydrogenation (H2 loss) and/or dehydration (H2O loss), as recorded by their variable H2O contents and D/H and Fe3+/Fe2+ ratios, and the release of these volatile species into the shallow plumbing system may facilitate Merapi’s often erratic eruptive behaviour.  相似文献   

3.
Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (<1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.  相似文献   

4.
The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO2, 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO2, 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H2O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H2O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H2O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H2O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H2O pressure (\({P}_{\text {H}_2{\rm O}}\)), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and \(f_{\text {O}_2}\):
$$ P_{\text{H}_{2}{\rm O}}({\rm MPa})=\left[{\frac{{\rm Mg\#}}{52.7}}-0.014 * \Updelta {\rm NNO}\right]^{15.12} $$
This barometer gives a minimum \({P}_{\text{H}_{2}{\rm O}}\) recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H2O pressures (500–900 MPa) and high pre-eruptive magmatic H2O contents (10–14 wt% H2O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil (2010).
  相似文献   

5.
Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi: 10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O–CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and can be tapped simultaneously by large eruptive events.  相似文献   

6.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   

7.
The two most commonly invoked processes for generating silicic magmas in intra-oceanic arc environments are extended fractional crystallization of hydrous island arc basalt magma or dehydration melting of lower crustal amphibolite. Brophy (Contrib Mineral Petrol 156:337–357, 2008) has proposed on theoretical grounds that, for liquids >~65 wt% SiO2, dehydration melting should yield, among other features, a negative correlation between rare earth element (REE) abundances and increasing SiO2, while fractional crystallization should yield a positive correlation. If correct, the REE–SiO2 systematics of natural systems might be used to distinguish between the two processes. The Permian-age Asago body within the Yakuno Ophiolite, Japan, has amphibolite migmatites that contain felsic veins that are believed to have formed from dehydration melting, thus forming an appropriate location for field verification of the proposed REE–SiO2 systematics for such a process. In addition to a negative correlation between liquid SiO2 and REE abundance for liquids in excess of ~65 % SiO2, another important model feature is that, at very high SiO2 contents (75–76 %), all of the REE should have abundances less than that of the host rock. Assuming an initial source amphibolite that is slightly LREE-enriched relative to the host amphibolites, the observed REE abundances in the felsic veins fully support all theoretical predictions.  相似文献   

8.
The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980–1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure (P) or volatile pressure ( $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O ) are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature–pressure–melt fraction (T $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O F) space. Our modeled crystals indicate that (1) crystallization starts at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 200–280 MPa at F = 0.65–0.7, (3) crystals are transferred to $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 100–130 MPa (often accompanied by 10–20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O , in contrast, can be effected by fluxing the reservoir with CO2-rich vapors that are either released from deeper in the system or transported with the recharge magma. Temperature fluctuations of 20–40 °C, on the other hand, are an inevitable consequence of incremental, or pulsed, assembly of crustal magma bodies wherein each pulse interacts with ancestral, stored magmas. We venture that this “petrological cannibalism” accounts for much of the plagioclase zoning and textural complexity seen not only at Mount St. Helens but also at arc magmas generally. More broadly we suggest that the magma reservoir below Mount St. Helens is dominated by crystal mush and fed by frequent inputs of hotter, but compositionally similar, magma, coupled with episodes of magma ascent from one storage region to another. This view both accords with other independent constraints on the subvolcanic system at Mount St. Helens and supports an emerging view of many active magmatic systems as dominantly super-solidus, rather than subliquidus, bodies.  相似文献   

9.
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.  相似文献   

10.
Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950–1100 °C, in the H2O activity (aH2O) range ~0.3 to 1, and at two ranges of oxygen fugacity (fO2) between ~FMQ to FMQ+1 and ~FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were ~1050 °C, ~2.8 wt% H2O in the melt (aH2O ~0.5), and relatively oxidizing (~FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions (~5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing–mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (>~1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab-derived fluids.  相似文献   

11.
Amphibole + phlogopite + diopside bearing veins are observed in a large number of upper mantle xenoliths, but the composition of the melt that forms them is poorly constrained. Recent data from the Heldburg Phonolite, Central Germany, has shown that phonolite melt will react with olivine and orthopyroxene xenocrysts to form reaction rims of amphibole + phlogopite + diopside at mid-lower crustal pressures. This is the first example of where a melt has reacted with peridotite to form the mineralogy of the metasomatic veins. It is therefore necessary to explore whether a phonolite melt could be the parent melt that forms amphibole + phlogopite + diopside metasomatic veins. Experimental reactions between single crystals of olivine and orthopyroxene with phonolite melt were conducted at upper mantle conditions of 1.0–1.5 GPa and 900–1,000 °C. Melt water contents were varied from anhydrous to >12 wt. H2O. Olivine reacts to form phlogopite reaction rims with overgrowths of diopside <1,000 °C or rims of secondary olivine >1,000 °C. Orthopyroxene reacts to form amphibole with epitaxial diopside overgrowths <1,000 °C. No reaction rims form when the bulk melt H2O is lower than ~3.8 wt%. Pressure has little effect over the small range tested. These experiments reproduce reaction rims on olivine and orthopyroxene observed in the Heldburg Phonolite, Central Germany, and suggest that a relatively narrow range of temperatures and melt water contents is required for rim formation. The compositions of rim amphibole, phlogopite and diopside from the experiments have very similar compositions to those from Heldburg but do not match those from metasomatic veins. Phenocrysts from Heldburg are similar to the metasomatic veins, suggesting that a phonolite could potentially form the veins if vein formation is dominated by crystallization rather than reaction and replacement of wall rock phases.  相似文献   

12.
Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions the largest of these. Hudson volcano has consistently discharged magmas of similar trachyandesitic and trachydacitic composition, with comparable anhydrous phenocryst assemblages, and pre-eruptive temperatures and oxygen fugacities. Pre-eruptive storage conditions for the three largest Holocene events have been estimated using mineral geothermometry, melt inclusion volatile contents, and comparisons to analogous high pressure experiments. Throughout the Holocene, storage of the trachyandesitic magmas occurred at depths between 0.2 and 2.7 km at approximately ~972°C (±25) and log fO2 −10.33–10.24 (±0.2) (one log unit above the NNO buffer), with between 1 and 3 wt% H2O in the melt. Pre-eruptive storage of the trachydacitic magma occurred between 1.1 and 2.0 km, at ~942°C (±26) and log fO2 −10.68 (±0.2), with ~2.5 wt% H2O in the melt. The evolved trachyandesitic and trachydacitic magmas can be derived from a basaltic parent primarily via fractional crystallization. Entrapment pressures estimated from plagioclase-hosted melt inclusions suggest relatively shallow levels of crystallization. However, trace element data (e.g., Dy/Yb ratio trends) suggests amphibole played an important role in the differentiation of the Hudson magmas, and this fractionation is likely to have occurred at depths >6 km. The absence of a garnet signal in the Hudson trace element data, the potential staging point for differentiation of parental mafic magmas [i.e., ~20 km (e.g., Annen et al. in J Petrol 47(3):505–539, 2006)], and the inferred amphibolite facies [~24 km (e.g., Rudnick and Fountain in Rev Geophys 33:267–309, 1995)] combine to place some constraint on the lower limit of depth of differentiation (i.e., ~20–24 km). These constraints suggest that differentiation of mantle-derived magmas occurred at upper-mid to lower crustal levels and involved a hydrous mineral assemblage that included amphibole, and generated a basaltic to basaltic andesitic composition similar to the magma discharged during the first phase of the 1991 eruption. Continued fractionation at this depth resulted in the formation of the trachyandesitic and trachydacitic compositions. These more evolved magmas ascended and stalled in the shallow crust, as suggested by the pressures of entrapment obtained from the melt inclusions. The decrease in pressure that accompanied ascent, combined with the potential heating of the magma body through decompression-induced crystallization would cause the magma to cross out of the amphibole stability field. Further shallow crystallization involved an anhydrous mineral assemblage and may explain the lack of phenocrystic amphibole in the Hudson suite.  相似文献   

13.
The Tonglvshan deposit is the largest Cu–Fe (Au) skarn deposit in the Edong district, which is located in the westernmost part of the Middle and Lower Yangtze River metallogenic belt, China. In this study, we performed a detailed in situ analysis of major and trace elements in amphiboles from the ore-related Tonglvshan quartz monzodiorite porphyry using electron microprobe (EMPA) analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two distinct populations of amphiboles, which can be distinguished by their aluminum content, are found in the quartz monzodiorite porphyry. The low-aluminum (Low-Al) amphiboles are subhedral or anhedral and formed at 46.3–73.5 MPa and 713–763 °C. In contrast, the high-aluminum (High-Al) amphiboles are euhedral and formed at 88–165 MPa and 778–854 °C. Some euhedral amphiboles are partially or completely replaced by Low-Al amphibole. The compositions of parental melts in equilibrium with the High-Al amphibole (Melt 1) and Low-Al amphibole (Melt 2) were computed by applying solid/liquid partition coefficients. This modeling shows that magma in equilibrium with High-Al amphibole (Melt 1) underwent 40% fractional crystallization of amphibole, plagioclase and apatite at a depth of ~5 km to evolve to magma in equilibrium with Low-Al amphibole (Melt 2). Copper enrichment occurred in the magma after undergoing fractional crystallization. The magma had a high oxygen fugacity, increasing from NNO + 1 (Melt 1) through NNO + 2 to HM (Melt 2), which could have prevented the loss of Cu (and possibly Au) to sulfide minerals during crystallization. Finally, the evolved magma intruded to shallower depths, where it presumably exsolved aqueous ore-forming fluids. Therefore, the large Cu–Fe–Au reserves of the Tonglvshan deposit can likely be attributed to a combination of controlling factors, including high oxygen fugacity, fractional crystallization, fluid exsolution, and a shallow emplacement depth.  相似文献   

14.
Constraining the pressure of crystallization of magmas is an important but elusive task. In this work, we present a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars. The method relies on the well-known shift of the quartz–feldspar saturation surface toward higher normative quartz melt compositions with decreasing pressure. The critical realization for development of the method is the fact that melt, quartz and feldspars need to be in equilibrium at the liquidus for the melt composition. The method thus consists of calculating the saturation surfaces for quartz and feldspars using rhyolite-MELTS over a range of pressures, and searching for the pressure at which the expected assemblage (quartz+1 feldspar or quartz+2 feldspars) is found at the liquidus. We evaluate errors resulting from uncertainties in glass composition using a series of Monte Carlo simulations for a quartz-hosted glass inclusion composition from the Bishop Tuff, which reveal errors on the order of 20–45 MPa for the quartz+2 feldspars constraint and on the order of 25–100 MPa for the quartz+1 feldspar constraint; we suggest actual errors are closer to the lower bounds of these ranges. We investigate the effect of fluid saturation in two ways: (1) By applying our procedure over a range of water contents for three glass compositions; we show that the effect of fluid saturation is more important at higher pressures (~300 MPa) than at lower pressures (~100 MPa), but reasonable pressure estimates can be derived irrespective of fluid saturation for geologically relevant H2O concentrations >3 wt% and (2) by performing the same type of pressure determinations with a preliminary version of rhyolite-MELTS that includes a H2O–CO2 mixed fluid phase; we use a range of H2O and CO2 concentrations for two compositions characteristic of early-erupted and late-erupted Bishop Tuff glass inclusions and demonstrate that calculated pressures are largely independent of CO2 concentration (for CO2 <1,000 ppm), at least for relatively high H2O contents, as expected in most natural magmas, such that CO2 concentration can be effectively neglected for application of our method. Finally, we demonstrate that pressures calculated using the rhyolite-MELTS geobarometer compare well with those resulting from H2O–CO2 glass inclusion barometry and Al-in-hornblende barometry for an array of natural systems for which data have been compiled from the literature; the agreement is best for quartz-hosted glass inclusions, while matrix glass yields systematically lower rhyolite-MELTS pressures, suggestive of melt evolution during eruptive decompression.  相似文献   

15.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

16.
To test a recently developed oxybarometer for silicic magmas based on partitioning of vanadium between magnetite and silicate melt, a comprehensive oxybarometry and thermometry study on 22 natural rhyolites to dacites was conducted. Investigated samples were either vitrophyres or holocrystalline rocks in which part of the mineral and melt assemblage was preserved only as inclusions within phenocrysts. Utilized methods include vanadium magnetite–melt oxybarometry, Fe–Ti oxide thermometry and -oxybarometry, zircon saturation thermometry, and two-feldspar thermometry, with all analyses conducted by laser-ablation ICP–MS. Based on the number of analyses, the reproducibility of the results and the certainty of contemporaneity of the analyzed minerals and silicate melts the samples were grouped into three classes of reliability. In the most reliable (n = 5) and medium reliable (n = 10) samples, all fO2 values determined via vanadium magnetite–melt oxybarometry agree within 0.5 log units with the fO2 values determined via Fe–Ti oxide oxybarometry, except for two samples of the medium reliable group. In the least reliable samples (n = 7), most of which show evidence for magma mixing, calculated fO2 values agree within 0.75 log units. Comparison of three different thermometers reveals that temperatures obtained via zircon saturation thermometry agree within the limits of uncertainty with those obtained via two-feldspar thermometry in most cases, whereas temperatures obtained via Fe–Ti oxide thermometry commonly deviate by ≥50 °C due to large uncertainties associated with the Fe–Ti oxide model at T-fO2 conditions typical of most silicic magmas. Another outcome of this study is that magma mixing is a common but easily overlooked phenomenon in silicic volcanic rocks, which means that great care has to be taken in the application and interpretation of thermometers and oxybarometers.  相似文献   

17.
We present new equilibrium mixed-volatile (H2O–CO2) solubility data for a phonotephrite from Erebus volcano, Antarctica. H2O–CO2-saturated experiments were conducted at 400–700 MPa, 1,190 °C, and ~NNO + 1 in non-end-loaded piston cylinders. Equilibrium H2O–CO2 fluid compositions were determined using low-temperature vacuum manometry, and the volatile and major element compositions of the glassy run products were determined by Fourier transform infrared spectroscopy and electron microprobe. Results show that the phonotephrite used in this study will dissolve ~0.8 wt% CO2 at 700 MPa and a fluid composition of $ X_{{{\text{H}}_{ 2} {\text{O}}}} $ ~0.4, in agreement with previous experimental studies on mafic alkaline rocks. Furthermore, the dissolution of CO2 at moderate to high $ X_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{fluid}} $ in our experiments exceeds that predicted using lower-pressure experiments on similar melts from the literature, suggesting a departure from Henrian behavior of volatiles in the melt at pressures above 400 MPa. With these data, we place new constraints on the modeling of Erebus melt inclusion and gas emission data and thus the interpretation of its magma plumbing system and the contributions of primitive magmas to passive and explosive degassing from the Erebus phonolite lava lake.  相似文献   

18.
The crystallization sequence of a basaltic andesite from Bezymianny Volcano, Kamchatka, Russia, was simulated experimentally at 100 and 700 MPa at various water activities (aH2O) to investigate the compositional evolution of residual liquids. The temperature (T) range of the experiments was 950–1,150 °C, aH2O varied between 0.1 and 1, and the log of oxygen fugacity (fO2) varied between quartz–fayalite–magnetite (QFM) and QFM + 4.1. The comparison of the experimentally produced liquids and natural samples was used to constrain the pressure (P)TaH2O–fO2 conditions of the Bezymianny parental magma in the intra-crustal magma plumbing system. The phase equilibria constraints suggest that parental basaltic andesite magmas should contain ~2–2.5 wt% H2O; they can be stored in upper crustal levels at a depth of ~15 km, and at this depth they start to crystallize at ~1,110 °C. The subsequent chemical evolution of this parental magma most probably proceeded as decompressional crystallization occurred during magma ascent. The final depths at which crystallization products accumulated prior to eruption are not well constrained experimentally but should not be shallower than 3–4 km because amphibole is present in natural magmas (>150 MPa). Thus, the major volume of Bezymianny andesites was produced in a mid-crustal magma chamber as a result of decompressional crystallization of parental basaltic andesites, accompanied by mixing with silicic products from the earlier stages of magma fractionation. In addition, these processes are complicated by the release of volatiles due to magma degassing, which occurs at various stages during magma ascent.  相似文献   

19.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

20.
In volatile-saturated magmas, degassing and crystallisation are interrelated processes which influence the eruption style. Melt inclusions provide critical information on volatile and melt evolution, but this information can be compromised significantly by post-entrapment modification of the inclusions. We assess the reliability and significance of pyroxene-hosted melt inclusion analyses to document the volatile contents (particularly H2O) and evolution of intermediate arc magmas at Volcán de Colima, Mexico. The melt inclusions have maximal H2O contents (≤4 wt%) consistent with petrological estimates and the constraint that the magmas crystallised outside the amphibole stability field, demonstrating that pyroxene-hosted melt inclusions can preserve H2O contents close to their entrapment values even in effusive eruptions with low effusion rates (0.6 m3 s?1). The absence of noticeable H2O loss in some of the inclusions requires post-entrapment diffusion coefficients (≤1 × 10?13 m2 s?1) at least several order of magnitude smaller than experimentally determined H+ diffusion coefficient in pyroxenes. The H2O content distribution is, however, not uniform, and several peaks in the data, interpreted to result from diffusive H2O reequilibration, are observed around 1 and 0.2 wt%. H2O diffusive loss is also consistent with the manifest lack of correlations between H2O and CO2 or S contents. The absence of textural evidence supporting post-entrapment H2O loss suggests that diffusion most likely occurred via melt channels prior to sealing of the inclusions, rather than through the host crystals. Good correlation between the melt inclusion sealing and volcano-tectonic seismic swarm depths further indicate that, taken as a whole, the melt inclusion population accurately records the pre-eruptive conditions of the magmatic system. Our data demonstrate that H2O diffusive loss is a second-order process and that pyroxene-hosted melt inclusions can effectively record the volatile contents and decompression-induced crystallisation paths of vapour-saturated magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号