首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A picrite lava (22 wt% MgO; 35 vol.% ol) along the western shore of the1.3–1.4 Ma Kahoolawe tholeiitic shield, Hawaii, contains small xenoliths of harzburgite, lherzolite, norite, and wehrlite. The various rock types have textures where either orthopyroxene, clinopyroxene, or plagioclase is in a poikilitic relationship with olivine. The Mg#s of the olivine, orthopyroxene, and clinopyroxene in this xenolith suite range between 86 and 82; spinel Mg#s range from 60 to 49, and plagioclase is An75–80. A 87Sr/86Sr ratio for one ol-norite xenolith is 0.70444. In comparison, the host picrite has olivine phenocrysts with an average Mg# of 86.2 (range 87.5–84.5), and a whole-rock 87Sr/86Sr ratio of 0.70426. Textural and isotopic information together with mineral compositions indicate that the xenoliths are related to Kahoolawe tholeiitic magmatism, but are not crystallization products of the magma represented by their host picrite. Rather, the xenoliths are crystalline products of earlier primitive liquids (FeO/MgO ranging 1 to 1.3) at 5–9 kbar in the cumulate environment of a magma reservoir or conduit system. The presence of ultramafic xenoliths in picrite but not in typical Kahoolawe tholeiitic lava (6–9 wt% MgO) is consistent with replenishment of reservoirs by dense Mg-rich magma emplaced beneath resident, less dense tholeiitic magma. Mg-rich magmas have proximity to reservoir cumulate zones and are therefore more likely than fractionated residual liquids to entrain fragments of cumulate rock.  相似文献   

2.
The zone of serpentinite melange in the Kamchatsky Mys Peninsula was found to contain high-magnesium ultramafic volcanic rocks, viz., plagioclase picrite (oceanite) with a MgO concentration of 22.5–25.8%. We evaluated the petrochemical and geochemical characteristics of these rocks, as well as their mineral compositions. The olivine phenocrysts make up 50–60% of the rock volume; their composition (mostly 87–89 mol % Fo) and the composition of melt inclusions in them indicate their origin from a picritic melt with an additional cumulative enrichment in olivine. The geochemical parameters (Zr/Y = 3.1, Th/Yb = 0.14–0.18, Nb/Yb = 2.39–2.66, La(N)/Sm(N) = 1.0–1.1, La(N)/Yb(N) = 1.24–1.42) indicate an oceanic genesis of these rocks affected by a mantle plume.  相似文献   

3.
Pyroclastic deposits from the 1982–1983 eruption of Galunggung volcano (Java, Indonesia) reflect preeruptive magmatic evolution which is of interest because of: (1) its duration of nine months, compared to a few hours or days for most historical eruptions; (2) the diversity of eruptive styles, from ash and scoria flows to phreatomagmatic explosions, and to the strombolian activity that marked the end of the eruption; and (3) the progressive variation in chemical composition with time, from andesite (58 wt.% SiO2) to high-Mg basalt (47 wt.% SiO2). The 1982–1983 Galunggung basalts are rather primitive: 10 to 12 wt% MgO, 180 to 200 ppm Ni and 550 to 700 ppm Cr. Despite the presence of about 40% phenocrysts, they may represent the most primitive basalts recognized in western Java. Basalts contain phenocrysts of olivine (Fo90-80), diopside-salite, and plagioclase (An95-75). Andesites contain plagioclase (An80–60), augite, hypersthene (En67-64), and titanomagnetite. The distribution of mineral compositions in each petrographic type is nearly unimodal, although scarce plagioclase and olivine xenocrysts have been observed. Abundance of gabbroic cumulates associated with the pyroclastic flows and evolution of mineral compositions from high-Mg basalts to andesites support crystal fractionation as the main differentiation mechanism, although magma mixing of basaltic andesite and andesite cannot be excluded. Major and trace element trends, which display rough decreases of MgO, CaO, Ni, Cr with increasing degree of differentiation and also linear positive correlations of hygromagmaphile elements, are compatible with both processes. However, some discrepancies are observed between major and trace element modelling, which may be explained to some extent by the influence of in situ crystallization and/or magma mixing. The constancy of 143Nd/144Nd (0.51286±3), 230Th/232Th (0.65±0.02), Th/U (4.08±0.07) ratios, and to a lesser extent 18O values (+5.8 to +6.4 % SMOW) and 87Sr/86Sr ratios (0.70440 to 0.70468) is compatible with a magmatic evolution through fractional crystallization without significant crustal contamination. Nevertheless low-18O and high 87Sr/86Sr values in basaltic andesites may be due to the introduction of meteoric fluids into the Galunggung magma.  相似文献   

4.
The 29.5 Ma Wah Wah Springs Formation which erupted from the Indian Peak Caldera has an estimated volume of > 3900 km3 making it one of the largest ignimbrites on earth. The magma was calc-alkaline, dacitic (68 wt. % SiO2) and phenocryst-rich (38 vol.%). Phenocrysts include plagioclase (An 47), magnesio-hornblende, Mg-biotite, quartz, Fe-Ti oxides, diopsidic-augite, and rare Ca-poor pyroxene, in order of decreasing abundance. Apatite, zircon and pyrrhotite occurs as inclusions within phenocrysts. Atmospheric glass losses (1040 km3) account for bulk-rock compositions that have SiO2 contents ranging from 63 to 67 wt.%. Glass compositions are high-silica rhyolite.Phenocrysts equilibrated at temperatures ranging from about 790 to 850°C and oxygen fugacities approximately 2.6 log units above the QFM buffer. Confining pressure estimates using the aluminum-in-hornblende geobarometer calibrated for calc-alkaline volcanic rocks suggest a mean pressure of 230±50 MPa corresponding to 7.5±1.5 km depth. These estimates are consistent with caldera formation accompanying emplacement.Crystal compositions for phenocrysts and mineral inclusions within phenocrysts are remarkably homogeneous throughout the outflow tuff, although minor zoning does occur. Given the dacitic composition of the magma, the weakly zoned phenocryst population cannot be modeled to produce the observed high-silica glass (melt) indicating open-system behavior for the magma. The high-silica rhyolite glass is interpreted to be an artifact of efficient magma mixing accompanying addition of highly evolved magma, or melt to intermediate composition magma. Mixing was followed by magma hybridization. Additional support for this hybridization model includes: (1) physically and chemically distinct populations of augite; (2) minor but unbiquitous resorbed plagioclase, biotite and hornblende phenocrysts; and (3) reverse zoning in some of the plagioclase euhedra within pumice lapilli.  相似文献   

5.
Tanna, one of the southernmost islands of the New Hebrides volcanic arc, is made of Late Pliocene to Recent island arc tholeiitic basalts and andesites, with SiO2 contents ranging from 45 to 57%. These lavas are highly porphyritic (30–50% in volume): phenocrysts of plagioclase are the most abundant, together with olivine and clinopyroxene. The groundmass contain plagioclase, augite, olivine, magnetite and glass; pigeonite, tridymite, sanidine and, rarely, biotite may also occur. The olivines and clinopyroxenes show an iron enrichment from the cores of phenocrysts to their rims and the groundmass crystals, but their compositional variations are not correlated with the Mg/Fe ratio of bulk host rocks, the most Fe-rich compositions being found in Mg-rich lavas. Plagioclase compositions range from An95 to An60 in the basalts and An60 to An50 in the andesites, but, within each group, they are not correlated with SiO2 or Na2O contents of host lavas. Consequently, the bulk major element compositions of Tanna volcanic rocks cannot be considered as primarily controlled by crystal separation from successive liquids. The oxyde-SiO2 variations diagrams, and the modal compositions and mineral chemistry show that crystal accumulation is the predominant mechanism accounting for bulk rock compositions. However, this does not exclude fractional crystallization: the variation of the calculated groundmass mineralogy strongly suggest the occurrence of crystal removal mainly clinopyroxene and magnetite.  相似文献   

6.
Petrographic and geochemical data are given for some basaltic rocks from the Koynaghat, Ambaghat and Panvel sections of the western Deccan volcanic province. This study confirms geochemical features established earlier for the Deccan basalts but brings out minor additional characters. Mineralogical and major-element compositions of the basaltic flows from the Koyna and Panvel sections indicate tholeiitic affinity; the Ambaghat flows exhibit a slight affinity towards alkali basalt. Rare earth element (REE) distribution patterns and trace-element abundances suggest minor fractionation of olivine and plagioclase during the evolution of the flows. The general similarity of chemical and mineralogical features over a wide area and the lack of conspicuous inter-element relationships suggest that the flows reflect the combined effects of partial melting, minor mineral fractionation and selective crustal contamination.  相似文献   

7.
Gabbro xenoliths in a tholeiitic lava of Kahoolawe Island, Hawaii, a 1.3–1.4 Ma shield volcano, are 1–3 cm in size and comprised of plagioclase, clinopyroxene, and orthopyroxene. Gabbro textures — while intergranular and in part subophitic-are open due to 28–48 vol.% of vesicular basalt occupying xenolith space. Vesicles in and around the xenoliths are lined or filled with rhyolitic glass (segregation vesicles). The host is evolved tholeiite (MgO 6.1 wt%) with phenocrysts, microphenocrysts, and glomerocrysts of olivine, clinopyroxene, orthopyroxene, and plagioclase, and megacrysts (1 cm) of plagioclase. The Sr-isotope ratio of one xenolith is 0.70489; the host basalt ratio is 0.70460. Xenolith isotope composition, grain resorption, and clinopyroxene (Fs12.5–15Wo38–35.5), orthopyroxene (Fs19.5–24Wo4.1), and plagioclase (An68–65Or0.8–1.2) compositions suggest that these gabbros crystallized from Kahoolawe tholeiitic magma of essentially the same composition as the host basalt, but pre-dating the magma represented by the host. Based on the absence of intergranular Fe–Ti oxide phases from the pl+cpx+opx assemblages, and the open, vuggy textures, we envision crystallization on a reservoir roof at temperatures >1100°C. Entrainment of gabbro assemblages and plagioclase megacrysts from a roof mush/suspension zone occurred during convection associated with replenishment of the magma reservoir. These open-textured gabbro xenoliths are therefore not fragments of preexisting coarse-grained bodies such as sills or segregation veins. Rhyolitic glass in vesicles represents a gas-effervescence filtration process that forced fractionated residual liquids from the groundmass into voids associated with the xenoliths.Sirrine Environmental Consultants, Fremont, CA 94538  相似文献   

8.
The volcanic sequences in three vertical sections (starting from m.s.l.) of the Deccan trap flows around Mahape, Mumbra and Kalyan have been demarcated into zones, mainly based on the megascopic texture and the degree of abundance of vesicles and amygdules. Petrographic, mineralogical and modal study of twelve samples indicate that the basalts are tholeiitic and are characterised by lateral inhomogeneities. Petrochemical data are suggestive of limited differentiation, a hyperferric iron enrichment, a Hawaiian trend and an affinity to alkalic and high-alumina basalt.  相似文献   

9.
In the course of studying the Deccan Trap Hows around Igatpuri (latitudes 19°38′ and 19°45′: longitudes 73°30′ and 73°42′), picrite-basalts, not hitherto reported from this area, have been found occurring associated with basaltic flows. Thirty-eight flows, of a total thickness of 2200 feet, have been delimited. Of these, 8 flows may be termed picrite-basalts with a thickness varying from 25 to 75 feet. A feature of these basic flows is the abundance of olivine phenocrysts, with a complete absence of pyroxene phenocrysts in two of the flows. Two flows may be termed oceanite, two ankaramite, while four flows have phenocrysts of olivine, pyroxene and lelspar of An 65–70 %. In the oceanite flows the olivine phenocrysts constitute 20 to 30 per cent of the rock. They are mostly fresh, but some are altered to iddingsite. As regards the basaltic flows, about half have scanty olivine phenocrysts, the remainder being devoid of olivine. Eight are coarse enough to be termed olivine-dolerites. In the picrite-basalts the pyroxene phenocrysts have an optic axial angle of from 55° to 60°. In the basaltic flows the angle varies from 45° to 52°. The olivine phenocrysts of the picrite-basalts are highly magnesian, whereas those of the basalts are more ferruginous, as determined by optical methods. West’s view that the origin of these picrite-basalts is due to differentiation by crystal settling followed by freezing and extrusion, seems to be supported by this study.  相似文献   

10.
The Lower Pliocene volcanic rocks occurring in the Gölcük area of SW Turkey exhibit alkaline major element trends with a general potassic character. The development of volcanism can be divided into 2 major stages such as trachytic ancient lavas/domes and tephriphonolitic, trachyandesitic to trachytic Gölcük eruptions (ignimbrites, lava/dome extrusions, phreatomagmatic deposits, and finally, young domes). Volcanic rocks consist primarily of plagioclase, clinopyroxene (which ranges in composition from diopside to augite and are commonly zoned), biotite, and phlogopite. Amphibole phenocrysts are restricted to the pyroclastic deposits. Pseudoleucites are also seen only in the lava/dome extrusions. Oxides and apatites are common accessory phenocryst phases. As would be expected from their potassic–alkaline nature, the volcanic rocks of the Gölcük area contain high amounts of LILE (Ba, Sr, Rb and K), LREE, and Zr. Concentrations of compatible elements such as Cr, Ni and V are very low, possibly indicating fractionation of olivine and clinopyroxene. Correlation of SiO2, Rb/Sr and MgO with 87Sr/86Sr (0.703506–0.704142) exhibit an increasing trend in the direction of crustal contamination. However, the isotopic compositions of Sr are not as high to indicate a high level of crustal contamination. Geochemical data are consistent with the derivation of Gölcük volcanic rocks from a metasomatized and/or enriched lithospheric mantle source during crustal extension in the area. This metasomatism was probably occurred by fluids released from the northward subduction between African and Eurasian plates during Tertiary, as the Gölcük volcanic rocks display features of island-arc magmas with having high Ba/Nb (>28) ratios, and Nb and Ti depletions. Lower Pliocene volcanism in the Gölcük was response to extensional tectonics.  相似文献   

11.
Newly identified ??a?? lava flows outcrop intermittently over an area of ~110?km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15?C25?m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound p??hoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ??a?? flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ??a?? lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound p??hoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ??a?? formation, or both. In this context, the ??a?? flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate p??hoehoe flow fields remains unclear.  相似文献   

12.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

13.
For any given volcanic field the compositions of primary melts provide important constraints on models of magmatic processes and volcanic eruptions. In this paper, based on petrography, olivine and bulk rock compositions, two tholeiitic picrites (samples C122 and C123) from Haleakala Volcano, east Maui are evaluated as possible primary melts. Sample C122 (bulk rock MgO = 16.6%) has a high apparent Mg-Fe exchange coefficient, KD, between olivine phenocrysts and bulk rock (0.6). However, major-elements and Ni mass-balance calculations show that the olivines in C122 are in equilibrium with the residual melt (matrix) after closed-system equilibrium fractionation of 25 wt.% olivine. Therefore, the Mg/Fe ratio, Ca content, and Ni content of C122 are consistent with the hypothesis that the bulk composition of C122 is close to a primary melt formed by partial melting of a mantle containing olivine with composition around Fo89 to Fo91. The uniform composition and small size (mostly 0.2–0.3 mm) of the olivine, and the glass patches in the matrix suggest fast ascent, and rapid cooling at shallow depth for C122. On the contrary, sample C123, which has an apparent KD (between the most mafic olivine megacrysts and the bulk rock) close to the equilibrium value (0.27), the multiple planar subgrain boundaries in most of the olivine crystals indicate that it may not be a primary melt unless the deformed olivines are generated at magmatic condition as phenocrysts. If the deformed subgrain boundary texture in olivine could indeed be generated at magmatic condition, then the wide compositional range of olivine crystals in C123 (Fo74 to Fo91) suggests multi-stage crystallization over a wide range of cooling temperatures.The compositions of the two picrites, and a differentiated basalt which does not contain xenocrysts suggest that the Haleakala tholeiites are derived from primary melts with at least 16–17 wt.% MgO. Lavas with such high MgO content are rare in Haleakala and other Hawaiian volcanoes; therefore, most Hawaiian tholeiites must have undergone extensive fractionation histories.  相似文献   

14.
The geological evolution of Merapi volcano, Central Java, Indonesia   总被引:1,自引:0,他引:1  
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170?ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109?±?60?ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138?±?3?ka; 135?±?3?ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30?ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8?±?1.5?ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792?±?90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872?AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.  相似文献   

15.
Irregularly shaped, large and clear (LAC) glass inclusions are present in plagioclase phenocrysts in several andesitic lavas erupted from Tolimán volcano, Guatemala. Their morphology is different from densely spaced, fine-grained glass inclusions that form concentric zones in dusty or cellular textured plagioclase phenocrysts. The large size of LAC inclusions make them suitable for microprobe analysis and average bulk compositions are presented for glasses in 30 phenocrysts from eight lava samples. Their compositions are rhyolitic and in disequilibrium, or out-range (Anderson 1976) with respect to whole-rock and groundmass glass compositions. LAC inclusions typically occur in large, tabular plagioclase phenocrysts with relatively uniform, sodic compositions (An 40–54). Compositions of feldspar phenocrysts not containing LAC inclusions range from An 41 to An 81. Petrographic and chemical data support a primary origin for LAC glasses, suggest mixing of mafic and silicic magmas, and also constrain a mechanism for magma mixing. Rapid growth of plagioclase and entrapment of LAC glass occurs during mixing in a vapor-rich silicic liquid under low degrees of undercooling. These conditions are possibly produced in a high-level magma body such as that envisioned by Huppert et al. (1982), where replenishment and subsequent crystallization of a hydrous magma induces density instability and mixing with the resident magma.  相似文献   

16.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

17.
The Rallier-du-Baty Peninsula forms the southwestern part of the Kerguelen Archipelago (Indian Ocean), whose magmatic activity is related to the long-lived 115-Ma Kerguelen plume. The peninsula is mostly made of alkaline rocks constituting two well-defined ring complexes. This paper focuses on the northern ring complex, which is not yet known. Recent field studies have revealed seven discrete syenitic ring dykes ranging in age from 6.2 to 4.9 Ma, and two later volcanic systems. 40Ar/39Ar dating of a trachytic ignimbrite linked to the Dôme Carva volcano complex yields an age of 26±3 Ka. This represents the last major eruptive event on the Kerguelen Archipelago. The volcanism is bimodal with trachybasalts and trachyandesites constituting the mafic lavas and trachytes and rhyolites constituting the felsic lavas. The volume of erupted felsic magma is by far the larger, and is represented by abundant pyroclastic deposits and lava flows. Boulders of plutonic rocks are found to the northwest of Dôme Carva, and represent intermediate rocks (i.e. monzogabbros and monzonites) that are not present at the surface. Basic rocks are mostly trachybasalts and trachyandesites, while true basalts are scarce. Their mineralogy consists chiefly of plagioclase, olivine, diopside and oxides. Sieve-textured plagioclase is common, as well as corroded olivine and diopside phenocrysts. Peralkaline commenditic trachytes are the most abundant type of acid volcanic rocks. They consist of abundant sanidine, augite and magnetite phenocrysts and interstitial quartz, aegerinic pyroxenes and Na-amphiboles. Ring dykes of quartz-poor alkali feldspar syenites display the same mineralogy, except hornblende is common and replaces diopside. Hornblende is particularly abundant in intermediate monzogabbros. Major and trace element variations of volcanic rocks emphasise the predominant role of fractional crystallisation with a general decrease of MgO, CaO, P2O5, TiO2, FeO, Ba, Sr and Ni from basic to felsic rocks. However, the scattering of the data from the basic rocks indicates that other processes have operated. The overall evolution from trachyte to rhyolite is in agreement with the fractionation of sanidine as the major control. An increase of incompatible elements from trachyte to rhyolite is observed. The felsic lavas display an increase of 87Sr/86Sr(i) without any significant variations in the Nd isotopic composition. The genesis of the basic rocks is complex and reflects concomitant processes of fractional crystallisation, mixing between different basic magmas and probable assimilation of Ba-rich oceanic crust. Major and trace element modelling confirms the possibility of producing the trachytes through continuous differentiation from a basaltic alkaline parent. Discrepancies observed for some trace elements can be explained by the crystallisation of amphibole at an intermediate stage of magma evolution. The overall evolution from trachyte to rhyolite is thought to be controlled by crystal fractionation. High 87Sr/86Sr(i) of the trachytes is interpreted to reflect interaction with an ocean-derived component, probably during assimilation of hydrothermally altered oceanic crust. Boulders of amphibole-bearing monzonites and monzogabbros found to the northwest of Dôme Carva are thought to represent intermediate magma composition that formed at depths but did not erupt.  相似文献   

18.
The rhyodactic O’Leary Porphyry which forms the Pleistocene (0.233±0.37 m.y.) volcanic domes of O’Leary Peak and Darton Dome in the San Francisco Volcanic Field (northern Arizona, U.S.A.) contains sanidine phenocrysts with oligoclase mantles (rapakivi texture). Rapakivi texture occurs worldwide in silicic rocks of many ages and has been attributed to various igneous and metamorphic processes. The O’Leary Porphyry contains both mantled and unmantled sanidine (both are Or63–69 Ab30–36An1), oligoclase and quartz phenocrysts, labradorite (An53Ab45Or2) and kaersutite xenocrysts and andesite xenoliths. The compositional range of oligoclase is the same (An11–26Ab70–80Orr–10) for the rapakivi mantles, the oligoclase phenocrysts, and the oligoclase crystals poikilitic within sanidines. Most mantles are discontinuous. The sanidine appears to have been resorbed prior to mantling. Experimental melting studies on the O’Leary Prophyry show that, for a 15 wgt.% water system, plagioclase crystallized prior to sanidine and quartz crystallized last. The O’Leary Porphyry, although inhomogeneous, plots on a Q-Or-Ab-An diagram well within the plagioclase stability field. Poikilitic plagioclases within sanidines further support crystallization of plagioclase prior to sanidine in the O’Leary Porphyry. Exsolution of a ternary feldspar to form a plagioclase mantle is the most commonly accepted igneous theory of rapakivi texture formation but has been eliminated as the origin of the O’Leary Porphyry rapakivi. Petrologic models by Tuttle and Bowen and by Stewart are rejected for the O’Leary rapakivi because of inconsistencies with the O’Leary occurrences. Two theories are viable for the O’Leary rapakivi texture. First, is a decrease in water vapor pressure which would enlarge the plagioclase stability field possibility causing mantling of metastable sanidines. The second and preferred theory is that of an addition of sodium and calcium by basification (chemical assimilation without melting) of the xenoliths within the O’Leary Porphyry. This would move the bulk composition of the melt into the plagioclase field possibly resulting in crystallization of plagioclase on sanidine crystals. Diffusion of sodium and calcium from the xenoliths to sanidine would result in mantling only those crystals near to the xenoliths. Later, convection would result in distribution throughout the melt of rapakivi, unmantled sanidines, and xenolithic kaersutite as is seen in the porphyry. Basic xenoliths are extremely common in rapakivi-bearing rocks. Those within the O’Leary Porphyry are andesitic and show resorption, and in some areas of O’Leary Peak itself, have been drawn out into schlieren.  相似文献   

19.
Geochemical and isotope results are presented from a new study of the most southern basalts in the Deccan Trap, India. Three chemical formations are recognised, two of which can be correlated with the established stratigraphy in Mahabaleshwar and imply a regional southerly dip of 0.06° over a distance of 250 km. In detail Sr-isotope variations within the Ambenali and Mahabaleshwar Formations can be shown to reflect three distinct end-members which provide new constraints for petrogenetic models. Pb-isotope data for selected basalts exhibit a wide range with206Pb/204Pb= 16.87–22.45, and a linear correlation on a Pb—Pb diagram. The least contaminated Ambenali basalts plot within the Pb-array, and interaction with mantle lithosphere involves a shift to less radiogenic Pb whereas contamination with crust is characterised by more radiogenic Pb. Unlike the Karoo and Parana continental flood basalt provinces only four flow units within the southern Deccan appear to contain a significant contribution from mantle lithosphere. The Mahabaleshwar and Ambenali Formation basalts exhibit a striking negative Pb—Sr isotope trend which is presently regarded as one of the features of interaction with shallow level lithospheric mantle. It further suggests that basalts from the Walvis Ridge, Kerguelen and Ninetyeast ridge all remobilised such shallow level material, and that the Deccan basalts which were not affected by crustal contamination reflect interaction between asthenospheric material similar to T-type MORB, but related to the Reunion hotspot, and continental mantle lithosphere of the Indian plate.  相似文献   

20.
The December 1981 — January 1982 eruption which started in the Christmas night on the SE side of Nyamulagira, gave the longest historical flow (26 km) representing the highest production rate of this volcano in this century (280×106m3 of erupted magmas in 19 days). This eruption built Rugarambiro, a composite spatter cinder-cone. The ejected lava is a K-hawaiite (kivite) whose basicity decreased during the eruption (first emission: D.I. = 40; last products: D.I. = 35). This chemical evolution is reflected by:
  • --the modal composition of lavas. The first emissions are poor in ferromagnesian phenocrysts (olivine + clinopyroxene: 3%) and rich in plagioclase (12%); the contrary is observed in the last ejected lavas (livine + Cpx: 16%; plagioclase: 1%);
  • --the nature of the crystallizing minerals in the groundmass. In fact, only the first ejections include alkaline feldspars, nepheline and Tiphlogopite;
  • --the glassy phase composition which is more differentiated in the first lavas (D.I. 68–84) than in the last ones (D.I. 42–61).
  • A stratification of the Nyamulagira magmatic chamber is proposed where magmatic differentiation has probably occurred for fractional crystallization. Mineralogical thermobarometers lead to locate this magmatic reservoir at the depth of 6–7 km that we had already hypothesized. The presence of phenocrysts of bytownite, basic chrysolite, diopside and salite indicates a basaltic paragenesis which marks a hawaiitic magma chamber feeding.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号