首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Alkenone unsaturation ratios of sedimentary lipids are used as a geochemical proxy for sea surface temperatures, and interest is growing in their potential as indicators of different water masses and possibly of salinity. We analyzed the abundance of unsaturated C37 to C38 ketones in lipid extracts of 57 surface sediment (0-1 cm) samples along a salinity gradient from 8 to 33 psu in the transition from the Skagerrak to the Baltic Sea (NW Europe). In addition to surface sediments, we analyzed alkenones in suspended particulate matter at 13 stations—over a gradient in salinity from 25 to 33 psu—during a bloom of the coccolithophore Emiliania huxleyi. Alkenones were detected in all samples (suspended matter and sediment) with variable contributions of the tetra-unsaturated C37 alkenone compound (%C37:4; range from 2 to 10% of total C37 alkenone content). Comparing the alkenone unsaturation index (U37K′) and %C37:4 data to climatological sea surface temperature and sea surface salinity data sets revealed that SST estimated from U37K′ of saline end members (samples from the Skagerrak) is in the general range of modern SST during bloom periods of haptophytes. At salinities below ∼30 psu %C37:4 increases to above 5% and the unsaturation ratios cease to be related to climatological annual or seasonal sea surface temperatures. On the other hand, the %C37:4 appears to be inversely and significantly correlated to salinity: Highest C37:4 proportions in the inner Baltic Sea are caused by an unidentified organism, but in the transition area at salinities down to 10 psu, the producer apparently is E. huxleyi. The suspended matter data together with those from the water column support the hypothesis of changing biosynthesis of alkenones under salt stress by the coccolithophore E. huxleyi, but constrain the maximum of %C37:4 attributable to salt stress to 10% of all C37 alkenones.  相似文献   

2.
We investigated the characteristics of the alkenones produced by a bloom of Emiliania huxleyi in the eastern Bering Sea in 2000. Alkenones were detected in surface waters between 57°N and 63°N, where phosphate concentrations were low and the ammonium/nitrate ratio was high. The total alkenone content (C37:2, C37:3, and C37:4) ranged from 22.0 to 349 μg g−1 in suspended particles and from 0.109 to 1.42 μg g−1 in surface sediments. This suggests that a large proportion of the particulate alkenones synthesized in the surface water rapidly degraded within the water column and/or at the water-sediment interface of the Bering Shelf. The change in the stable carbon isotopic composition (δ13C) of C37:3 alkenone could not be explained only by variation in [CO2(aq)] in the surface water but also depended on the growth rate of E. huxleyi. The alkenone unsaturation index (UK′37) was converted into an alkenone “temperature” with three equations [Prahl et al 1988], [Sikes et al 1997] and [Müller et al 1998]; Sikes et al.’s (1997) equation gave the best correlation with the observed sea surface temperature (SST) in the eastern Bering Sea. However, some temperatures estimated by Sikes et al.’s (1997) equation from the UK′37 varied from the observed SST, possibly because of the rapidly changing rate of alkenone synthesis in the logarithmic growth stage or the low rate of alkenone synthesis when nutrients were limiting. Temperatures estimated from UK′37 in the surface sediments (6.8-8.2°C) matched the observed SST in September (7-8°C) but differed from the annual average SST of 4 to 5°C, suggesting that most of the alkenone in the eastern Bering Sea was synthesized during limited periods, for instance, in September. The relative amounts of C37:4 alkenone as proportions of the total alkenones (referred to as C37:4%) were high, ranging from 18.3 to 41.4%. Low-salinity water (<32 psu) within the study area would have contributed to the high C37:4% because a negative linear relationship between C37:4% and salinity was found in this study.  相似文献   

3.
Arabian Sea sediments record changes in the upwelling system off Arabia, which is driven by the monsoon circulation system over the NW Indian Ocean. In accordance with climate models, and differing from other large upwelling areas of the tropical ocean, a 500,000-yr record of productivity at ODP Site 723 shows consistently stronger upwelling during interglaciations than during glaciations. Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index (UK′37) are high (up to 27°C) during interglaciations and low (22-24°C) during glaciations, indicating a glacial-interglacial temperature change of >3°C in spite of the dampening effect of enhanced or weakened upwelling. The increased productivity is attributed to stronger monsoon winds during interglacial times relative to glacial times, whereas the difference in SSTs must be unrelated to upwelling and to the summer monsoon intensity. The winter (NE) monsoon was more effective in cooling the Arabian Sea during glaciations then it is now.  相似文献   

4.
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk′37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk′37 SST estimates show an average late glacial–interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial–interglacial SST change, respectively. Both the Uk′37 and the FP-12E SST estimates, as well as the planktonic foraminiferal δ18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk′37 SST estimates show a cooling of ca. 0.2–0.6°C compared to the Bølling–Allerød period. These Uk′37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.  相似文献   

5.
The alkenone unsaturation index UK′37 has been applied to reconstruct past temperature changes in both marine and lacustrine systems. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (%C37:4) can reflect surface salinity changes in lacustrine systems. Here we present long-chain C37 alkenone distribution patterns in surface sediments from Lake Qinghai, China. Surface sediments were sampled over a large range of surface salinity changes (1.7-25 g/l) within Lake Qinghai and its surrounding lakes, while temperature differences at these sampling locations should be relatively small. We have found that %C37:4 varies from 15% to 49% as surface salinity decreases. We tentatively describe this %C37:4-salinity link with a general linear regression: %C37:4 = 53.4 (±7.8) − 1.73 (±0.45) × S (n = 28, r2 = 0.62), although step-wise %C37:4 changes in response to salinity variation may exist. UK′37 values vary between 0.10 and 0.16 at these sites and the inferred range of lake water temperature changes is ∼2-3 °C, suggesting that UK′37 largely reflects temperature signal across a large salinity range, consistent with previous findings that UK′37 can indicate temperature changes over a large diversity of environmental settings. We have also found that UK′37 values are correlated with salinity changes (r2 = 0.4), and thus cannot exclude potential temperature effect on %C37:4 and salinity effect on UK′37 in this study. However, even extreme estimates of temperature differences within the lake are still unable to explain the observed %C37:4 changes. We therefore suggest that %C37:4 could be used to infer past lake salinity changes at a regional scale.  相似文献   

6.
The large (∼20‰) hydrogen isotopic gradient in surface waters of the northwest Atlantic Ocean is exploited to track changes in the source of alkenones to the Bermuda Rise sediment drift. Cultures of the predominant alkenone-producing coccolithophorid, E. huxleyi, were grown in deuterium-enriched seawater and shown to possess alkenones with a D/H ratio that closely tracked the water D/H ratio (r2 = 0.999, n = 5 isotopic enrichments) with a fractionation factor (α) between 0.732 and 0.775. A hydrogen isotopic depletion of -193 ± 3‰ (n = 9) was measured in alkenones from suspended particles relative to seawater in the subpolar and subtropical northwest Atlantic Ocean. This value was used to calculate the water δD values in which alkenones from Bermuda Rise sediment were synthesized, and by extension, the water mass in which they were produced. Applying this technique we find that 60% to 100% of the alkenones in late Holocene Bermuda Rise sediment were produced in deuterium-depleted subpolar water to the northwest of the drift. To reconcile values of the alkenone unsaturation ratio (Uk37), a widely used proxy for sea surface temperature, with the δD values of alkenones in late Holocene sediments from the Bermuda Rise at least three sources of sediment must be invoked: a cold, very isotopically depleted source, almost certain to be the Scotian Margin; a warm, moderately isotopically-depleted source, likely to be the northwestern edge of the subtropical gyre; and a cold, isotopically enriched source, which we hypothesize to be the subpolar waters overlying the main branch of North Atlantic Deep Water flowing southwest from the Nordic Seas.  相似文献   

7.
The UK37′ index has proven to be a robust proxy to estimate past sea surface temperatures (SSTs) over a range of time scales, but like any other proxy, it has uncertainties. For instance, in reconstructions of the Last Glacial Maximum (LGM) in the northern North Atlantic, UK37′ indicates higher temperatures than those derived from foraminiferal proxies. Here we evaluate whether such warm glacial estimates are caused by the advection of reworked alkenones in ice‐rafted debris (IRD) to deep‐sea sediments. We have quantified both coccolith assemblages and alkenones in sediments from glaciogenic debris flows in the continental margins of the northern North Atlantic, and from a deep‐sea core from the Reykjanes Ridge. Certain debris flow deposits in the North Atlantic were generated by the presence of massive ice‐sheets in the past, and their associated ice streams. Such deposits are composed of the same materials that were present in the IRD at the time they were generated. We conclude that ice rafting from some locations was a transport pathway to the deep sea floor of reworked alkenones and pre‐Quaternary coccolith species during glacial stages, but that not all of the IRD contained alkenones, even when reworked coccoliths were present. We speculate that the ratio of reworked coccoliths to alkenone concentration might be useful to infer whether significant reworked alkenone inputs from IRD did occur at a particular site in the glacial North Atlantic. We also observe that alkenones in some of the debris flows contain a colder signal than estimated for LGM sediments in the northern North Atlantic. This is also clear in the deep‐sea core studied where the warmest intervals do not correspond to the intervals with large inputs of reworked coccoliths or IRD. We conclude that any possible bias to UK37′ estimates associated with reworked alkenones is not necessarily towards higher values, and that the high SST anomalies for the LGM are unlikely to be the result of a bias caused by IRD inputs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Long-chain alkenones (LCK) of lacustrine surface sediments were analyzed in 37 lakes from China. The results obtained were complemented by published data from 13 other Chinese lakes. These lakes are located across large temperature and precipitation gradients, therefore allowing for an assessment of the distribution pattern of LCK and their temperature dependency. Different distribution patterns of LCK (C37 predominant pattern and C38 predominant pattern) were detected in the surface sediment samples. The ratio of C37:4 methyl ketone to the sum of C37 alkenones observed in the different lakes is highly variable (5%-96%, with mean value of 55%), and more than that seen in marine systems. The finding that some of the ocean LCK precursor algae (Gephyrocapsa oceanica, Coccolithus pelagicus) were also present in the limnic systems suggested that both systems might have similar biosynthetic sources. Empirical relationships between the alkenone unsaturation index U37k and different temperature sets (mean annual air temperature, mean annual air temperature in different seasons, and lake surface water temperature of July) were tested. The best correlation between U37k and temperature was obtained using mean annual air temperature. A general linear regression of U37k and MAAT can be expressed as U37k = 0.0328 × T + 0.126 (n = 38, r2 = 0.83). Although questions such as species-uncertainty and other unknown factors for U37k temperature dependence still remain, the equation might be representative of the average contribution of LCK to sediments for these data over a wide range of surface temperatures, water chemistry and different alkenones-producer algal populations. The general relationship of U37k and mean annual air temperature is consistent with that in marine systems. It supports the suggestion that the biosynthetic pathway of alkenones and the mechanism of their temperature signal may be similar in both marine and limnic systems. LCK might be used as an important paleotemperature proxy in limnic environment.  相似文献   

9.
The successful reconstruction of sea surface temperatures using alkenone paleothermometry (U37k′) has relied on the premise that there is no significant differential degradation of alkenones with different states of unsaturation during diagenetic processes. To test this assumption, we conducted a comparative study of contemporary sediments in oxic and anoxic bottom waters from the Santa Monica Basin, offshore California. Long-chain alkenones were quantified and sea surface temperature were calculated using the calibrated U37k′–T relationship of Prahl et al. (1988). Our results show that temperature record from the oxic sediments is higher by as much as 4°C compared to those from time-equivalent anoxic sediments as a result of differential degradation of long-chain unsaturated alkenones and bioturbation mixing in the oxic sediments. The differential degradation of C37:3 vs. C37:2 alone could account for up to 2.5°C difference between these two records. This finding has significant implication in the interpretation of paleo–sea surface temperature data using alkenone paleothermometry.  相似文献   

10.
Three methods are presented on how to purify acetylated sterols, acetylated triterpenols and individual alkenones for hydrogen isotope analysis from marine and lacustrine sediments using reverse-phase high performance liquid chromatography (RP-HPLC). The main advantages over previous HPLC methods are reduced operator time, increased automation and the ability to simultaneously purify multiple target compounds from a sample. These gains are achieved primarily by acetylating compounds prior to purification rather than after, and also by using a fraction collector with semi-preparatory rather than analytic configuration. The effectiveness of the method is demonstrated for (i) dinosterol and taraxerol in sediment from the brackish pond Poza del Diablo, Galápagos, (ii) for di- and tri-unsaturated C37 and C38 alkenones in cultured Emiliania huxleyi, (iii) for brassicasterol, and di-, tri- and tetra-unsaturated C37 alkenones in sediment from Manito Lake, Saskatchewan, Canada, and (iv) for brassicasterol, dinosterol and di-, tri- and tetra-unsaturated C37 alkenones in sediment from the Great Salt Lake, Utah. The purification process yields 80–90% recoveries and results in no measurable hydrogen isotope alteration.  相似文献   

11.
The morphotectonic features of the Central Indian Ocean Basin (CIOB) provide information regarding the development of the basin. Multibeam mapping of the CIOB reveals presence of abundant isolated seamounts and seamount chains sub-parallel to each other and major fracture zones along 73° E, 79° E and 75°45′ E. Morphological analyses were carried out for 200 seamounts that occur either as isolated edifies or along eight sub-parallel chains. The identified eight parallel seamount chains that trend almost north–south and reflecting the absolute motion of the Indian plate, probably originated from the ancient propagative fractures. Inspite of the differences in their height, the seamounts of these eight chains are morphologically correlatable. In the study area the seamounts are clustered north and south of 12° S latitude. Interestingly, in the area north of 12° S (area II: 9°–12° S) the seamounts are distinctly smaller (≤ 400 m height) whereas, the area south of 12° S (area I: 12°–15° S) has a mixed population of seamounts. The normalized abundance of the CIOB seamount is 976 seamounts/106 km2 but on a finer scale this value varies from 500 to 1600 seamounts/106 km2, which is less than the seamount concentrations of the Pacific and Atlantic oceans (9000 to 16,000 seamounts/106 km2). Three categories of seamounts are present in the CIOB e.g. (1) single-peaked (2) multi-peaked and (3) composite. The study indicate that single-peaked seamounts are dominant (89%) while multi-peaked is less (8%) and composite ones are rare (3%) in the CIOB.The progressive northward movement of the Indian continent caused collision between India and Asia at around 62 Ma ago. A majority of the near-axis originated seamounts in the CIOB seemed to have formed as a consequence of the temporally widespread (Cretaceous  65 Ma to late Eocene < 49 Ma) collision between India and Eurasia. The regional stress patterns in the Indian plate vary N to NE in the continent and N to NW in Indian Ocean areas. The combined effect of the regional stress patterns maintained the orientation of the seamount chains and the local stress regime helped in the upwelling of magma and formation of seamounts. The low heat flow, morphological features and geochemical signature indicate that the morphotectonic structures formed contemporaneously with the oceanic crust.  相似文献   

12.
Our analysis of lipid molecular fossils from a Lake Titicaca (16° S, 69° W) sediment core reveals distinct changes in the ecology of the lake over an ∼25,000-yr period spanning latest Pleistocene to late Holocene time. Previous investigations have shown that over this time period Lake Titicaca was subject to large changes in lake level in response to regional climatic variability. Our results indicate that lake algal populations were greatly affected by the changing physical and chemical conditions in Lake Titicaca. Hydrocarbons are characterized by a combination of odd-numbered, mid- to long-chain (C21-C31) normal alkanes and alkenes. During periods when lake level was higher (latest Pleistocene, early Holocene, and late Holocene), the C21n-alkane, and the C25 and C27 alkenes dominate hydrocarbon distributions and indicate contribution from an algal source, potentially the freshwater alga Botryococcus braunii. The C30 4 α-methyl sterol (dinosterol) increases sharply during the mid-Holocene, suggesting a greatly increased dinoflagellate presence at that time. Long-chain alkenones (LCAs) become significant during the early Holocene and are highly abundant in mid-Holocene samples. There are relatively few published records of LCA detection in lake sediments but their occurrence is geographically widespread (Antarctica, Asia, Europe, North America). Lake Titicaca represents the first South American lake and the first low-latitude lake in which LCAs have been reported. LCA abundance and distribution may be related to the temperature-dependent response of an unidentified algal precursor. Although the LCA unsaturation indices cannot be used to determine absolute Lake Titicaca temperatures, we suspect that the published LCA U37K unsaturation calibrations can be applied to infer relative temperatures for early to mid-Holocene time when LCA concentrations are high. Using these criteria, the U37K unsaturation indices suggest relatively warmer temperatures in the mid-Holocene. In contrast to previous speculation, lipid analysis provides little evidence of a greatly increased presence of aquatic plants during the mid-Holocene. Instead, it appears that a few algal species were dominant in the lake. Based on the dramatic rise in abundances of LCAs and dinosterol during the early to mid-Holocene, we suspect that the algal producers of these compounds rose in response to a combination of physical and chemical changes in the lake. These include temperature, salinity, and alkalinity changes that occurred as lake level dropped sharply during a multi-millennial drought affecting the Central Andean Altiplano.  相似文献   

13.
Coupled measurements of δ18O and accelerator mass spectrometry (AMS) 14C in a particular species of planktonic foraminifera may be used to calculate sea-level estimates for the last deglaciation. Of critical importance for this type of study is a knowledge of the seasonality of foraminiferal growth, which can be provided by δ18O measurements of modern shells (core tops, plankton tows). Isotopic (δ18O, AMS-14C dating) and faunal records (transfer function sea surface temperature) were obtained from two cores in the North Atlantic at about 37°N. The locations were chosen to obtain high sedimentation rate records removed from the major ice-melt discharge areas of the last deglaciation. Based upon Globigerina bulloides data, four δ18O-based sea-level estimates were calculated: −67 ± 7 m at 12,200 yr B.P. and −24 ± 8 m at about 8200 yr B.P. for core SU 81-18; −83 ± 10 m at 12,200 yr B.P. and −13 ± 11 m at about 8500 yr B.P. for core SU 81-14. Using a second working hypothesis concerning the seasonability of G. bulloides growth, it is suggested that the sea-level rose by about 40 m during the millennium which followed 14,500 yr B.P.  相似文献   

14.
Coastal sea-surface temperature (SST) and sea-surface salinity (SSS), including seasonality, in northwest (NW) Europe during the early phase of the Eemian interglacial ca. 125 ka ago were reconstructed from Littorina littorea (common periwinkle) gastropods. The results were based on intra-annual δ18O analyses in recent and fossil shells, mainly originating from the sea of Kattegat (Sweden) and the English Channel (United Kingdom), and confined to intertidal settings. The Eemian L. littorea shells indicated annual SSTs in the range 8–18°C for the English Channel and 8–26°C for Kattegat. All specimens from the Eemian sites experienced summer SSTs of ca. 1–3°C above recent conditions. The estimated winter SST in the English Channel during the Eemian was comparable to modern measurements of ca. 8°C. However, the Kattegat region displayed Eemian winter SST approximately 8°C warmer than today, and similar to conditions in the western English Channel. The recent-fossil isotope analogue approach indicated high SSS above 35 practical salinity units (psu) for a channel south of England in full contact with the North Atlantic Ocean during the last interglacial. In addition, the Kattegat shells indicated a SSS of ca. 29 psu, which points out a North Sea affinity for this region during the Eemian.  相似文献   

15.
We investigated the effect of CO2 and primary production on the carbon isotopic fractionation of alkenones and particulate organic matter (POC) during a natural phytoplankton bloom dominated by the coccolithophore Emiliania huxleyi. In nine semi-closed mesocosms (∼11 m3 each), three different CO2 partial pressures (pCO2) in triplicate represented glacial (∼180 ppmv CO2), present (∼380 ppmv CO2), and year 2100 (∼710 ppmv CO2) CO2 conditions. The largest shift in alkenone isotopic composition (4-5‰) occurred during the exponential growth phase, regardless of the CO2 concentration in the respective treatment. Despite the difference of ∼500 ppmv, the influence of pCO2 on isotopic fractionation was marginal (1-2‰). During the stationary phase, E. huxleyi continued to produce alkenones, accumulating cellular concentrations almost four times higher than those of exponentially dividing cells. Our isotope data indicate that, while alkenone production was maintained, the interaction of carbon source and cellular uptake dynamics by E. huxleyi reached a steady state. During stationary phase, we further observed a remarkable increase in the difference between δ13C of bulk organic matter and of alkenones spanning 7-12‰. We suggest that this phenomenon is caused mainly by a combination of extracellular release of 13C-enriched polysaccharides and subsequent particle aggregation induced by the production of transparent exopolymer particles (TEP).  相似文献   

16.
We here report the discovery of unusual distributions of long-chain alkenones (C37-C42) in two Cretaceous black shales from the Blake-Bahama Basin, western North Atlantic. These sediments are Cenomanian (c. 95 Ma) and mid-Albian (c. 105 Ma) in age, thus significantly extending the geological range of these compounds. The precise source of these lipids is, as yet, unknown, although they may derive from an ancient ancestor of Emiliania huxleyi.  相似文献   

17.
The recent tectonics of the Arctic Basin and northeastern Asia are considered as a result of interaction between three lithospheric plates: North-America, Eurasia and Spitsbergen. Seismic zones (coinciding in the Norway-Greenland basin with the Kolbeinsey, Mohns and Knipovich ridges, and in the Arctic Ocean with the Gakkel Ridge) clearly mark the boundaries between them. In southernmost Svalbard (Spitsbergen), the secondary seismic belt deviates from the major seismic zone. This belt continues into the seismic zone of the Franz Josef Land and then merges into the seismic zone of the Gakkel Ridge at 70°–90°E. The smaller Spitsbergen plate is located between the major seismic zone and its secondary branch.Within northeastern Asia, earthquake epicenters with magnitude over 4.5 are concentrated within a 300-km wide belt crossing the Eurasian continent over a distance of 3000 km from the Lena estuary to the Komandorskye Islands. A single seismic belt crosses the northern sections of the Verkhoyansky Ridge and runs along the Chersky Ridge to the Kolymo-Okhotsk Divide.To compute the poles of relative rotation of the Eurasian, North-American and Spitsbergen plates we use 23 new determinations of focal-mechanism solutions for earthquakes, and 38 azimuths of slip vectors obtained by matching of symmetric mountain pairs on both sides of the Knipovich and Gakkel ridges; we also use 14 azimuths of strike-slip faults within the Chersky Ridge determined by satellite images. The following parameters of plate displacement were obtained: Eurasia/North America: 62.2°N, 140.2°E (from the Knipovich Ridge section south of the triple junction); 61.9°N, 143.1°E (from fault strikes in the Chersky Ridge); 60.42°N, 141.56°C (from the Knipovich section and from fault strikes in the Chersky Ridge); 59.48°N, 140.83°E, α = 1.89 · 10−7 deg/year (from the Knipovich section, from fault strikes in the Chersky Ridge and from the Gakkel Ridge section east of the triple junction). The rate was calculated by fitting the 2′ magnetic lineations within the Gakkel Ridge).North-America/Spitsbergen: 70.96°N, 121.18°E, α = −2.7 · 10−7 deg/year from the Knipovich Ridge section north of the triple junction, from earthquakes in the Spitsbergen fracture zone and from the Gakkel Ridge section west of the triple junction). Eurasia/Spitsbergen: 70.7°N, 25.49°E, α = −0.99 · 10−7 deg/year (from closure of vector triangles).  相似文献   

18.
C.T. Klootwijk   《Tectonophysics》1974,21(3):181-195
From alternating-field and thermal demagnetization studies on two dolerite “Traps” in the Gwalior Series (Central India), dated at 1830 ±200 m.y., three different palaeomagnetic directions could be distinguished. The characteristic magnetization component, which is considered as the primary magnetization, has a mean direction: D=78°, I=+34.5°, α95=5°, k=369, N=4 (Pole): 155.5°E19°N, dp=3°, dm=5.5°.A comparison of the presented data with other Precambrian and Phanerozoic data from the Indian subcontinent might suggest that the Indian subcontinent underwent a continuous anticlockwise rotational movement during the last 1800 m.y.  相似文献   

19.
This paper reports the preliminary application of ESR dating to loess strata. The samples were collected from the 7th palaeosol layer (S7) of the Luochuan section, Shaanxi province in China. The ESR age of S7 is 736 ka (total dose 2945 Gy, annual dose 4 mGy/year). This age represents the original eolian accumulation age. The result is consistent with the palaeomagnetic data (730 ka). We have also carried out thermal annealing experiments on quartz grains from the S7 sample. ESR intensities (g = 2.0005) increase from 25°C to 320°C. It may be that trapped electrons transfer into the E′ centre site. ESR intensities decrease from 340°C to 460°C due to thermal annealing. We obtained a mean-life of E′ centre electrons at 20°C of 6.66 × 108 years. The activation energy is 1.35 eV and frequency factor is 3.7 × 108 min−1.  相似文献   

20.
Kinematic analysis of fault slip data for stress determination was carried out on Late Miocene to Quaternary rocks from the fore arc and intra-arc regions of the Chilean Andes, between 33° and 46° south latitudes. Studies of Neogene and Quaternary infilling (the Central Depression), as well as plutonic rocks of the North Patagonian Batholith along the Liquiñe–Ofqui Fault Zone, have revealed various compressional and/or transpressional states of stress. In the Pliocene, the maximum compressional stress (σ1) was generally oriented east–west. During the Quaternary, the deformation was partitioned into two coeval distinctive states of stress. In the fore arc zone, the state of stress was compressional, with σ1 oriented in a N–S to NNE–SSW direction. In the intra-arc zone the state of stress was transpressional with σ1 striking NE–SW. Along the coast, in one site (37°30′S) the Quaternary strain deformation is extensional, with an E–W direction, which can be explained by a co-seismic crustal bending readjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号