首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
summary . A new technique is presented for modelling the elastic constants of cracked structures with application to systems with weak concentrations of parallel cracks, and of simple biplanar and triplanar cracks. The velocities and Vp/Vs ratios of these anisotropic structures are used to provide quantitative models for some earthquake precursors. These results indicate the great importance of crack geometry to the behaviour of precursors. The velocities of saturated cracks appear to favour the dilatancy-diffusion model of precursory phenomena. Synthetic seismograms are calculated for propagation through possible dilatancy zones. The seismograms show some characteristic features which may be useful for the investigation of earthquake dilatancy.  相似文献   

2.
Data from 90 permanent broad-band stations spread over central and eastern Europe were analysed using Ps receiver functions to study the crustal and upper-mantle structure down to the mantle transition zone. Receiver functions provide valuable information on structural features, which are important for the resolution of European lithospheric dynamics. Moho depths vary from less than 25 km in extensional areas in central Europe to more than 50 km at stations in eastern Europe (Craton) and beneath the Alpine–Carpathian belt. A very shallow Moho depth can be observed at stations in the Upper Rhine Graben area ( ca. 25 km), whereas, for example, stations in the SW Bohemian Massif show a significantly deeper Moho interface at a depth of 38 km. Vp / Vs ratios vary between 1.60 and 1.96, and show no clear correlation to the major tectonic units, thus probably representing local variations in crustal composition. Delayed arrivals of converted phases from the mantle transition zone are observed at many stations in central Europe, whereas stations in the cratonic area show earlier arrivals compared with those calculated from the IASP91 Earth reference model. Differential delay times between the P410s and P660s phases indicate a thickened mantle transition zone beneath the eastern Alps, the Carpathians and the northern Balkan peninsula, whereas the transition zone thickness in eastern and central Europe agrees with the IASP91 value. The thickening of the mantle transition zone beneath the eastern Alps and the Carpathians could be caused by cold, deeply subducted oceanic slabs.  相似文献   

3.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

4.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

5.
Summary. The potential function ø for a magnetic body of susceptibility μ in a medium of susceptibility μ* satisfies the integral equation
Here Φ* is the potential function for the region without the heterogeneity and R is the distance from the point of observation to the point on the surface, s , of the body. δΦ /δn is the normal derivative, in the direction of the outward normal. The equation allows for the effects of demagnetization. For numerical purposes the surfaces can be divided into N facets over which δΦ/δ n is a constant. The unknown quantities δΦ/δnj can be found from the system of equations defined by:
The prime on the summation sign denotes that the summation does not include the i th element. The magnetic field in the direction of the unit vector P( P 1, P 2, P3 ) is given by:   相似文献   

6.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   

7.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

8.
Summary. Following the classic work of Eshelby, the slip and stress distributions due to an elliptical plane shear crack are evaluated. The relation between average (or maximum) slip on the crack and the (constant) static stress drop, for faults of different aspect ratios, is found. The slip vector is not parallel to the applied stress but makes a small angle to it, except when the stress is applied along the major or minor axis of the ellipse. The stress -distribution around the crack shows that in addition to the expected stress concentration along the crack edge, there are broad regions of stress increase off the crack plane for circular and elliptical cracks, similar to those known to exist for in-plane but not for antiplane shear cracks. Whether the stress- intensity factor at the end of one axis is greater or less than that at the end of the other axis ( ka ≶ kb ), depends on the condition: √ b/a ≶ (1 − v ) where a and b are the semi-axes of the ellipse, ka and kb are the stress-intensity factors at the end of the a- and b -axes and v is Poisson's ratio. The total stress-intensity factor varies smoothly along the edge of the ellipse from one axis to the other and it is found that this variation is rather small.  相似文献   

9.
We present a theory for the radiation of high-frequency waves by earthquake faults. We model the fault as a planar region in which the stress drops to the kinematic friction during slip. This model is entirely equivalent to a shear crack. For two-dimensional fault models we show that the high frequencies originate from the stress and slip velocity concentrations in the vicinity of the fault's edges. These stress concentrations radiate when the crack expands with accelerated motion. The most efficient generation of high-frequency waves occurs when the rupture velocity changes abruptly. In this case, the displacement spectrum has an ω-2 behaviour at high frequencies. The excitation is proportional to the intensity of the stress concentration near the crack tips and to the change in the focusing factor due to rupture velocity. We extend these two-dimensional results to more general three-dimensional fault models in the case when the rupture velocity changes simultaneously on the rupture front. Results are similar to those described for two-dimensional faults. We apply the theory to the case of a circular fault that grows at constant velocity and stops suddenly. The present theory is in excellent agreement with a numerical solution of the same problem.
Our results provide upper bounds to the high-frequency radiation from more realistic models in which rupture velocity does not change suddenly. The ω-2 is the minimum possible decay at high frequencies for any crack model of the source.  相似文献   

10.
A new model that accounts for the stress dependence of the phase velocity of elastodynamic waves propagating in a cracked solid under compression is presented. The phase velocities of longitudinal and shear waves are derived from the effective elastic properties of a cracked solid, which are evaluated within the framework of Kachanov's approach. Following Kachanov, the extra-compliance tensor of the cracked solid is related to the crack compliances, which display a marked non-linear behaviour when subjected to a compressive load. Such non-linear behaviour is shown to be derived from the elastic interaction between the contacting crack faces under compression. This work does not address the effect of mutual interaction among cracks and the generation of higher harmonics due to the medium non-linearity. Numerical examples are presented that illustrate the phase velocity changes occurring in a solid with a random distribution of parallel cracks as a function of an external compressive load. A distinctive feature of the acoustoelastic effect in solids with large parallel fractures and in solids with distributions of aligned microcracks is also illustrated.  相似文献   

11.
Summary. We have analysed the east-west tilt components, O1, K1, N2, M2 and S2 from a continuously recording tiltmeter located in Uwekahuna Vault on Kilauea Volcano, Hawaii, for the period 1971—79. Detailed analysis of the M2 component gives values of 30.9 ± 2.0 (95 per cent) nrad and 116.0 ± 2.0° for the amplitude and phase, respectively, compared to values of 48.5 nrad and 139.4° for the equilibrium tide. the total theoretical tide, found by summing the equilibrium and load tides, amounts to 37.2 nrad at a phase of 121.7°. the 20 per cent discrepancy with that observed may be due to an inaccurate cotical chart, cavity effects in the vault, strain—tilt coupling or an inappropriate solid earth model. In the vicinity of Hawaii (≤ 3°) two independent cotidal charts give almost identical results for the near field ocean load. At greater distances, we use the Schwiderski (1978) cotidal chart. We estimate that local cavity and strain—tilt coupling effects are less than 12 per cent owing to the agreement between geodetically determined and instrumental tilt but we can not rule out regional effects. Assuming these are small and the cotical charts correct, we find that the M2 results are brought into satisfactory agreement if, instead of using an average oceanic earth model in the (< 75 km) vicinity of Hawaii, we use an earth model with nearly one-half the oceanic rigidity. Such a low upper mantle and crustal rigidity is consistent with Kilauea's position above the thermal upwelling associated with the Hawaiian hotspot.  相似文献   

12.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

13.
Fundamental-mode Rayleigh and Love waves generated by several earthquakes situated along great-circle paths between pairs of seismograph stations have been analysed to obtain coefficients of attenuation, group velocities, phase velocities, and specific quality factors in the period range 18–80s in two regions of the South American continent. One set of paths crosses the shield region which lies on the eastern coast and another set traverses the mountainous region inland. the average attenuation coefficient values are clearly higher in the tectonically active western region throughout the entire period range than in the eastern or shield region.
Inversion of the attenuation data yielded shear wave internal friction ( Q -1β) models as a function of depth in the crust and upper mantle in both regions. A low- Q zone below the lithosphere is prominent in both regions. the results show that substantial variations of Q β occur in the two regions of South America. the Qβ values were found to be inversely related to the heat flow values or to the temperature.  相似文献   

14.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

15.
This paper presents a method to invert underside-reflection ( P d P or S d S arrivals) data for lateral depth variations of upper-mantle discontinuities, combining traveltime and amplitude data. The method greatly improves the resolution of small-scale undulations obtained by existing imaging methods and does not suffer from the long-wavelength biases that are likely to be present in currently available models. Existing inversion methods account for the large size of the Fresnel zone of underside reflections, but not for its complexity, arising from the mini-max traveltime nature of PP- and SS -related waves. This neglect results in long-wavelength artefacts from small-scale undulations of the discontinuities, obscuring true long-wavelength depth variations. The inversion method presented in this paper uses a complex-valued sensitivity kernel, derived from the representation of underside reflections through a Kirchhoff integral formulation. The sensitivity kernel accounts for the varying sensitivity of the waveforms to discontinuity structure over the Fresnel zone. The method is applied to a large, synthetic data set. The data set consists of P d P amplitudes and traveltimes. The results show that the new inversion method resolves depth variations on a lateral scale that is smaller than the size of the Fresnel zone of individual underside reflections (but larger than the dominant wavelength), retaining the resolution of large-scale variations. The results presented here suggest that the discontinuity depth variations induced by slab penetration of the 670 discontinuity could be resolved by current broad-band P 670 P data sets.  相似文献   

16.
Summary. The asymptotic properties of spheroidal mode dispersion at high frequency for fixed phase velocity are related to the intercept times τβ( p ) for P and S waves. If the mode eigenfrequency and the ratio of horizontal to vertical displacement at the surface for the mode are known τα( p ) and τβ( p ) may be separately estimated. If discontinuities exist in the velocity model then 'solotone' effects occur, in frequency at fixed slowness, and in τα( p ), τβ( p ) estimated from the mode dispersion as a function of slowness. The coupling of P and S waves in the spheroidal modes means that the interaction of P waves with upper-mantle discontinuities affects also the estimates of the S wave τβ( p ) values for which the corresponding turning points lie in the lower mantle. The asymptotic formalism also shows that sharp pulses formed by superposition of spheroidal modes correspond to multiple PS reflections.
A study of τα( p ), τβ( p ) estimates derived from spheroidal modes with periods from 45–50s, calculated for model 1066B, shows that even in the presence of strong upper-mantle discontinuities the errors in intercept time are only about one-tenth of a period. The asymptotic properties may there-for provide a useful means of estimating intercept times from modes with a few seconds period as a supplement to travel-time methods.  相似文献   

17.
The magnitude m bLg 5.0 Mont-Laurier earthquake of 1990 October 19, in Quebec, Canada, was one of the largest to have occurred in eastern North America during the past decade. High-frequency ground motions recorded on regional network instruments exceeded values anticipated for an event of its size by a factor of 3. A commonly favoured explanation for the discrepancy is that the source was a rare 'high-stress' event. In this paper, detailed fault-slip models are derived to fit waveform and spectral characteristics of the regional data. The results establish that the effective rupture stress was normal (about 100 bars), that the fault rupture developed asymmetrically, and that the average slip time for points inside the rupture area (approx. 0.1 s) was significantly less than that associated with the standard Brune (1970) source spectral model. The rupture area developed in at least four distinct episodes, each extending the previously ruptured area. Taken together with similar results for the m bLg 6.5 Saguenay earthquake of 1988 November, the results indicate that a widely used assumption in hazard analyses, that earthquake spectra are adequately represented by the standard Brune spectral model, is unreliable for the interpretation and prediction of strong ground motion.  相似文献   

18.
Summary. The response of many dynamical systems to an impulse is a linear combination of decaying cosines. The frequencies of the cosines have generally been estimated in geophysics by periodogram analysis and little formal indication of uncertainty has been provided. This work presents an estimation procedure by the methods of complex demodulation and nonlinear regression that specifically incorporates in the basic model the decaying aspect of the cosines (periodogram analysis does not). The use of plots of the instantaneous phase as a function of time is shown to greatly enhance resolution. Expressions for the variances of eigenfrequencies, amplitudes, phases and damping constants Q are derived by non-linear least-squares. The results are illustrated, for the problem of the free oscillations of the Earth, by computations with the record made at Trieste of the Chilean earthquake of 1960 May 22. Sample values are periods and standard errors of 737.79 ± 0.13 s, 506.25 ± 0.13 s and 429.60 ± 0.14 s for 0 T 8, 0 T 13 and 0 T 16 with Q values and standard errors of 200 ± 14, 230 ± 28 and 215 ± 30, respectively.  相似文献   

19.
Summary. Titanomagnetites of composition Fe2.4-δAlδTi0.6O4 and Fe2.6-δAlδTi0–4O4(δ=0, 0.1 and 0.2 in both cases) were prepared in the monodomain state by pulverization of sintered synthetic material. In low fields, the thermoremanence (TRM) was found to be linear with inducing field and of high enough intensity to account for typical natural remanent magnetizations of fresh submarine basalts. The higher field TRM acquisition curves follow the Néel model curve for an assemblage of non-interacting identical particles in a general way only, the differences being due to interactions, or the range of particle blocking temperatures and volumes or other features of the samples not included in the model. The unblocking temperatures of low field TRM lie in a narrow range below the Curie point. The low field TRM is very resistant to alternating field demagnetization and provides a very striking illustration of the strength of the TRM mechanism in preserving a stable record of a weak magnetic field. The result of a Lowrie-Fuller test on the material is consistent with the monodomain state.  相似文献   

20.
The dynamic coalescence of two mode II cracks on a planar fault is simulated here using the elastodynamic boundary integral equation method. We focus on the complexity of the resultant slip rate and seismic radiation in the crack coalescence model (CCM) and on the reconstruction of a single crack model (SCM) that can reproduce the CCM waveforms from heterogeneous source parameters rather than coalescence. Simulation results reveal that localized higher slip rates are generated by coalescence as a result of stress interaction between the approaching crack tips. The synthesized seismic radiation exhibits a distinct coalescence phase that has striking similarities to stopping phases in the radiation and propagation properties. The corresponding SCM yields a singular increase in the stress drop distribution, which is accompanied by a sudden decrease in it across the point of coalescence in the CCM. This implies that the generation of high-frequency radiation is more efficient from coalescence than from stopping, although both phenomena exhibit the same strong  ω−2  -type displacement spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号