首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   

2.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

3.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

4.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   

5.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   

6.
Two different Pan-African tectono-metamorphic events are recognised in the Taita Hill Tsavo East National Park/Galana river area, SE-Kenya (Mozambique belt) based on petrographic and geothermobarometric evidence. Structurally, this area can be subdivided into four units: (1) the easternmost part of the basement along the Galana river is characterized by subhorizontal slightly to the west and east dipping foliation planes. Migmatic paragneisses with intercalated marbles, calcsilicates and metapelites and bands of amphibolites are the dominant rock type. (2) The western part of the Galana river within the Tsavo East National Park is a ca. 25 km wide shear zone with subvertical foliation planes. The eastern part shows similar rocks as observed in unit 1, while towards west, metasedimentary units become rare and the main rock types are tonalitic gneisses with intercalated amphibolites. (3) A 10 km wide zone (Sagala Hills zone) between the strike slip zone (unit 2) and the Taita Hills (unit 4) is developed. This zone is characterized by elongated and folded felsic migmatic amphibole and garnet bearing orthogneiss bodies with intercalated bands of mafic rocks. (4) The Taita Hills are a slightly to the N dipping nappe stack. The main rock type in the Taita Hills are amphibole–biotite–plagioclase–quartz ± garnet ± clinopyroxene ± scapolite bearing migmatic gneisses with mafic bands. In the southern part, metapelites, marbles and some amphibolites are common.Although the geological structures are different in units 1 and 2, the calculated PT conditions are similar with peak PT of 760–820 °C and 7.5–9.5 kbar. Temperatures in unit 3 (Sagalla Hills zone) and unit 4 (Taita Hills) are slightly higher ca. 760–840 °C, but pressure is significantly higher, ranging from 10 to 12 kbar. Sillimanite growth around kyanite, garnet zonation pattern, mineral reaction textures, and PT calculations constrain a “clock-wise” PT-path with near isobaric cooling following the peak of metamorphism. The different PT conditions, tectonic setting, and a different age of metamorphism are evidence that units 1 and 2 (Galana river) belong to a different tectono-metamorphic event than unit 3 (Sagala Hills zone) and 4 (Taita Hills). The major shear zone (unit 2) marks a tectonic suture dividing the two different tectono-metamorphic domains. It is also likely that it played an important role during exhumation of the granulite facies rocks from units 3 and 4.  相似文献   

7.
John Wakabayashi   《Tectonophysics》2004,392(1-4):193
Metamorphic pressure (P)–temperature (T) paths are commonly used as tools to interpret the tectonic history of orogenic belts, those deformed belts of rocks that record past activity along active plate margins. Many studies and reviews relating PT path development to tectonics have focused on thrusting–thermal relaxation cycles, with special emphasis on collisional processes. Other studies have assumed that PT paths resulted from a single tectono-metamorphic event that accounted for the entire burial–exhumation history of the rocks. In many cases, such assumptions may prove invalid.This paper speculates on the relationship of tectonic processes other than thrusting–heating to PT path development. The processes discussed herein include subduction initiation, triple-junction interactions, initiation and shut off of arc volcanism, subcontinental delamination, and hot spot migration. All of these processes may leave a signature in the metamorphic rock record. Examples are presented from a number of localities, most of which are from the Pacific Rim. Although thrusting–heating cycles have influenced metamorphic evolution in many orogenic belts, the potential impact of other types of tectonic mechanisms should not be overlooked.  相似文献   

8.
Precambrian magnesite occurrences hosted by metadolomites from the Orós belt, Ceará, Brazil, are part of a greenschist–amphibolite, metavolcano-sedimentary terrain, dated at 1.8 Ga, cut by Meso- to Neoproterozoic Brasiliano granites and Neoproterozoic basic sills. These rocks were affected by a shear zone between 580 and 500 Ma. The magnesite-bearing marbles can be grouped as medium-grained (1–9 mm) at the Riacho Fundo ore deposit or sparry magnesite (1–15 cm) at the Cabeça de Negro ore deposit. The sparry magnesite shows textural characteristics related to original sedimentary structures. Both types of magnesite-bearing marbles contain aqueous and aqueous-carbonic fluid inclusions that yield homogenization temperatures between 170 and 370 °C. Applying a pressure correction, these temperatures are compatible with the evolution from greenschist to amphibolite facies metamorphic conditions, as described in previous work on the Orós region. It also agrees with data in specialized literature on the metamorphism of carbonate rocks. Fluid inclusion distribution, composition, and physical-chemical characteristics suggest temperature increase, probably related to metamorphism on these rocks. The medium-grained magnesite records partial contamination of CO2-rich inclusions by relict carbonaceous material (bitumen, hydrocarbons?) that favors, but does not confirm, a syngenetic sedimentary origin and could have caused the lowering of CO2 melting point in these inclusions. Therefore, though textural evidence points to a sedimentary-diagenetic model, fluid inclusions record conditions of a metamorphic event.  相似文献   

9.
In this study, we reconstruct the inverted metamorphic sequence in the western Arunachal Himalaya using combined structural and metamorphic analyses of rocks of the Lesser and Greater Himalayan Sequences. Four thrust-bounded stratigraphic units, which from the lower to higher structural heights are (a) the Gondwana rocks and relatively weakly deformed metasediments of the Bomdila Group, (b) the tectonically interleaved sequence of Bomdila gneiss and Bomdila Group, (c) the Dirang Formation and (d) the Se La Group are exposed along the transect, Jira–Rupa–Bomdila–Dirang–Se La Pass. The Main Central thrust, which coincides with intense strain localization and the first appearance of kyanite-grade partial melt is placed at the base of the Se La Group.Five metamorphic zones from garnet through kyanite, kyanite migmatite, kyanite-sillimanite migmatite to K-feldspar-kyanite-sillimanite migmatites are sequentially developed in the metamorphosed low-alumina pelites of Dirang and Se La Group, with increasing structural heights. Three phases of deformation, D1–D2–D3 and two groups of planar structures, S1 and S2 are recognized, and S2 is the most pervasive one. Mineral growths in all these zones are dominantly late-to post-D2, excepting in some garnet-zone rocks, where syn-D1 garnet growths are documented. Metamorphic isograds, which are aligned parallel to S2 were subsequently folded during D3. The deformation produced plane-non-cylindrical fold along NW–SE axis.In the garnet-zone, peak metamorphism is marked by garnet growth through the reaction biotite + plagioclase → garnet + muscovite. An even earlier phase of syn-D1 garnet growth occurred in the chlorite stability field with or without epidote. In the kyanite-zone metapelites, kyanite appeared via the pressure-sensitive reaction, garnet + muscovite → kyanite + biotite + quartz. Staurolite was produced in the same rock by retrograde replacement of kyanite following the reaction, garnet + kyanite + H2O → staurolite + quartz. These reactions depart from the classical kyanite- and staurolite-isograd reactions in low-alumina pelites, encountered in other segments of eastern Himalaya. In the metapelites, just above the kyanite-zone, melting begins in the kyanite field, through water-saturated and water-undersaturated melting of paragonite component in white mica. Leucosomes formed through these reactions are characteristically free of K-feldspar, with sodic plagioclase and quartz as the dominant constituents. With increasing structural height, the melting shifts to water-undersaturated melting of muscovite component of white mica, producing an early K-feldspar + kyanite and later K-feldspar + sillimanite assemblages and granitic leucosomes.Applications of conventional geothermobarometry and average PT method reveal near isobaric (at P  8 kbar) increase in peak metamorphic temperatures from 550 °C in the garnet-zone to >700 °C for K-feldspar-kyanite-sillimanite-zone rocks. The findings of near isobaric metamorphic field gradient and by the reconstruction of the reaction history, reveal that the described inverted metamorphic sequence in the western Arunachal Himalaya, deviates from the classical Barrovian-type metamorphism. The tectonic implication of such a metamorphic evolution is discussed.  相似文献   

10.
The Timor–Tanimbar islands of eastern Indonesia form a non-volcanic arc in front of a 7 km deep fore-arc basin that separates it from a volcanic inner arc. The Timor–Tanimbar Islands expose one of the youngest high P/T metamorphic belts in the world, providing us with an excellent opportunity to study the inception of orogenic processes, undisturbed by later tectonic events.Structural and petrological studies of the high P/T metamorphic belt show that both deformation and metamorphic grade increase towards the centre of the 1 km thick crystalline belt. Kinematic indicators exhibit top-to-the-north sense of shear along the subhorizontal upper boundaries and top-to-the-south sense in the bottom boundaries of the high P/T metamorphic belt. Overall configuration suggests that the high P/T metamorphic rocks extruded as a thin sheet into a space between overlying ophiolites and underlying continental shelf sediments. Petrological study further illustrates that the central crystalline unit underwent a Barrovian-type overprint of the original high P/T metamorphic assemblages during wedge extrusion, and the metamorphic grade ranged from pumpellyite-actinolite to upper amphibolite facies.Quaternary uplift, marked by elevation of recent reefs, was estimated to be about 1260 m in Timor in the west and decreases toward Tanimbar in the east. In contrast, radiometric ages for the high P/T metamorphic rocks suggest that the exhumation of the high P/T metamorphic belt started in western Timor in Late Miocene time and migrated toward the east. Thus, the tectonic evolution of this region is diachronous and youngs to the east. We conclude that the deep-seated high P/T metamorphic belt extrudes into shallow crustal levels as a first step, followed by doming at a later stage. The so-called ‘mountain building’ process is restricted to the second stage. We attribute this Quaternary rapid uplift to rebound of the subducting Australian continental crust beneath Timor after it achieved positive buoyancy, due to break-off of the oceanic slab fringing the continental crust. In contrast, Tanimbar in the east has not yet been affected by later doming. A wide spectrum of processes, starting from extrusion of the high P/T metamorphic rocks and ending with the later doming due to slab break-off, can be observed in the Timor–Tanimbar region.  相似文献   

11.
Magmatic arcs are zones of high heat flow; however, examples of metamorphic belts formed under magmatic arcs are rare. In the Pontides in northern Turkey, along the southern active margin of Eurasia, high temperature–low pressure metamorphic rocks and associated magmatic rocks are interpreted to have formed under a Jurassic continental magmatic arc, which extends for 2800 km through the Crimea and Caucasus to Iran. The metamorphism and magmatism occurred in an extensional tectonic environment as shown by the absence of a regional Jurassic contractional deformation, and the presence of Jurassic extensional volcaniclastic marine basin in the Pontides, over 2 km in thickness, where deposition was coeval with the high‐T metamorphism at depth. The heat flow was focused during the metamorphism, and unmetamorphosed Triassic sequences crop out within a few kilometres of the Jurassic metamorphic rocks. The heat for the high‐T metamorphism was brought up to crustal levels by mantle melts, relicts of which are found as ultramafic, gabbroic and dioritic enclaves in the Jurassic granitoids. The metamorphic rocks are predominantly gneiss and migmatite with the characteristic mineral assemblage quartz + K‐feldspar + plagioclase + biotite + cordierite ± sillimanite ± garnet. Mineral equilibria give peak metamorphic conditions of 4 ± 1 kbar and 720 ± 40 °C. Zircon U–Pb and biotite Ar–Ar ages show that the peak metamorphism took place during the Middle Jurassic at c. 172 Ma, and the rocks cooled to 300 °C at c. 162 Ma, when they were intruded by shallow‐level dacitic and andesitic porphyries and granitoids. The geochemistry of the Jurassic porphyries and volcanic rocks has a distinct arc signature with a crustal melt component. A crustal melt component is also suggested by cordierite and garnet in the magmatic assemblage and the abundance of inherited zircons in the porphyries.  相似文献   

12.
Paragonite- and garnet-bearing high-grade epidote-amphibolite (PGEA) in the Ise area of the Hida Mountains, Japan is characterized by the high-pressure (HP) epidote-amphibolite facies parageneses (M1), garnet + hornblende + clinozoisite + paragonite + quartz + rutile. Paragonite and garnet of the peak M1 stage are locally replaced by retrograde albite (+ oligoclase) and chlorite (M2), respectively. Phase equilibria constrain peak metamorphic conditions of P = 1.1–1.4 GPa and T = 530–570 °C, and a decompressional PT path for this rock. Mineral parageneses of prograde epidote-amphibolite facies are comparable to some HP rocks from the Hongan region of western Dabie, but differ from other HP mafic schists with cooling ages of c. 330 Ma in the Hida Mountains. New paragonite K–Ar dating for the PGEA yields a Triassic cooling event at 210 Ma that is coeval with regional cooling and exhumation of the Sulu–Dabie–Qinling (SDQ) belt. Both petrological and geochronological data of the Triassic HP epidote-amphibolite in Hida Mountains support our earlier hypothesis that the SDQ belt extends across the Korean Peninsula to SW Japan.  相似文献   

13.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

14.
An assemblage of predominantly metasedimentary rocks in the Eastern Ghats Province, India, underwent granulite facies metamorphism and deformation in early Neoproterozoic times, and was subsequently intruded by the Koraput alkaline complex. The intrusion was earlier believed to be syn- to late tectonic. The gabbroic core of the complex hosts nepheline-bearing syenitic dykes and veins. Following emplacement, magmatic amphibole within the syenites, and early orthopyroxene in feldspathic gneisses within the country rocks were retrogressed to biotite during pervasive solid-state deformation. Subsequent prograde metamorphism resulted in the formation of anhydrous assemblages at the expense of relict magmatic amphibole within the syenites, and metamorphic biotite in both the complex and the country rocks. Reactions reconstructed from textural observations indicate breakdown of biotite and amphibole to garnet + clinopyroxene ± orthopyroxene-bearing assemblages. Schreinemakers’ analysis on the relevant mineral associations suggests that heating was followed by loading of the region. This indicates thermal rejuvenation of the complex and the host granulites during an intracrustal orogeny that post-dates emplacement and cooling of the pluton. Available ages suggest that this event occurred in the mid-Neoproterozoic, and is probably unrelated to the amalgamation of the granulite belt with the Archaean Bastar/Dharwar craton.  相似文献   

15.
The Yunkai Terrane is one of the most important pre-Devonian areas of metamorphosed supracrustal and granitic basement rocks in the Cathaysia Block of South China. The supracrustal rocks are mainly schist, slate and phyllite, with local paragneiss, granulite, amphibolite and marble, with metamorphic grades ranging from greenschist to granulite facies. Largely on the basis of metamorphic grade, they were previously divided into the Palaeo- to Mesoproterozoic Gaozhou Complex, the early Neoproterozoic Yunkai ‘Group’ and early Palaeozoic sediments. Granitic rocks were considered to be Meso- and Neoproterozoic, or early Palaeozoic in age. In this study, four meta-sedimentary rock samples, two each from the Yunkai ‘Group’ and Gaozhou Complex, together with three granite samples, record metamorphic and magmatic zircon ages of 443–430 Ma (Silurian), with many inherited and detrital zircons with the ages mainly ranging from 1.1 to 0.8 Ga, although zircons with Archaean and Palaeoproterozoic ages have also been identified in several of the samples. A high-grade sillimanite–garnet–cordierite gneiss contains 242 Ma metamorphic zircons, as well as 440 Ma ones. Three of the meta-sedimentary rocks show large variations in major element compositions, but have similar REE patterns, and have tDM model ages of 2.17–1.91 Ga and εNd (440 Ma) values of −13.4 to −10.0. Granites range in composition from monzogranite to syenogranite and record tDM model ages of 2.13–1.42 Ga and εNd (440 Ma) values of −8.4 to −1.2. It is concluded that the Yunkai ‘Group’ and Gaozhou Complex formed coevally in the late Neoproterozoic to early Palaeozoic, probably at the same time as weakly to un-metamorphosed early Palaeozoic sediments in the area. Based on the detrital zircon population, the source area contained Meso- to Neoproterozoic rocks, with some Archaean material. Palaeozoic tectonothermal events and zircon growth in the Yunkai Terrane can be correlated with events of similar age and character known throughout the Cathaysia Block. The lack of evidence for Palaeo- and Mesoproterozoic rocks at Yunkai, as stated in earlier publications, means that revision of the basement geology of Cathaysia is necessary.  相似文献   

16.
The metamorphic evolution of the Garzón Massif, Colombia, is established on the basis of the textural, goethermobarometric, and geochronological relationships of the metamorphic minerals. The geothermobarometric data define a clockwise, nearly isothermal decompression path (ITD) for rocks from Las Margaritas migmatites, constrained by four PT areas: 780–826 °C and 6.3–8.0 kbar, 760–820 °C and 8.0–8.8 kbar, 680–755 °C and 6.6–9.0 kbar, and 630 °C and 4 kbar. For the a garnet-bearing charnockitic gneiss from the Vergel granulites, the path is counterclockwise, constrained by geothermobarometric data of 5.3–6.2 kbar and 700–780 °C and 6.2–7.2 kbar and 685–740 °C. The clockwise ITD path represents a loop followed by the orogen during the transitional granulite–amphibolite metamorphic conditions, probably associated with a subduction process followed by a collisional tectonic event. This subduction framework produced continental crust thickening between 1148 and 1034 Ma and later collision with another continental block approximately 1000 Ma ago. The orogenic exhumation occurred with moderate uplift rate. The counterclockwise trajectory and two metamorphic events suggest a vertical displacement between the Vergel granulites and Las Margaritas migmatites units, because there is no isotopic difference that indicates the existence of different terranes. The data confirm that the metamorphic evolution for this domain was more dynamic than previously believed and includes: (1) metamorphic processes with the generation of new crust with a possible mixture of old material and (2) metamorphic recycling of continental crust. These geological processes characterize a complex Mesoproterozoic orogenic event that shares certain features with the Grenvillian basement rocks participating in the formation of Rodinia.  相似文献   

17.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

18.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

19.
Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P >40 kbar for diamond-bearing rocks, and about 740–780 °C at >28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.  相似文献   

20.
Stratabound tungsten mineralization in regional metamorphic calc-silicate rocks of probably Lower Paleozoic age is described from the polymetamorphic Austroalpine Crystalline Complex (ACC) of the Eastern Alps. Scheelite-bearing calc-silicate rocks which are often associated with marbles and tourmalinites are intercalated conformably with metaclastic rocks. Alkalipoor calc-silicate rocks with high amounts of clinozoisite/ zoisite, grossular, quartz, plagioclase, etc. are the most important host rocks for tungsten mineralization. These unusual calc-silicate rocks are products of regional metaorphism and are interpreted as reaction skarns. They have formed in the presence of a water-dominated fluid phase with very low XCO2.In the Koralpe estimated P-T conditions are 650–700 °C at 5–7 kb. The mineralogical composition and the mineral zoning of the calc-silicate rocks is controlled by the degree of the Hercynian and Eoalpine metamorphism. There are no signs of graniteelated skarn formation. Tungsten preconcentration is thought to be syngenetic/syndiagenetic. It is genetically linked to exhalative hydrothermal processes in other Lower Paleozoic terrains of the Eastern Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号