首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transport of woody debris from urban surfaces,through local urban waterways,to constriction and blockage risk locations is not well understood.Flume trials have identified debris and watercourse dimensions as influential factors on debris movement,and large woody debris movement has been traced in the natural rural environment using time series photography,active transponders,and field surveys.Using novel passive transponder technology,small woody debris has been traced through an urban case study watercourse to establish key influential factors on urban debris transport.Through incorporating urban debris transport detail into the source and deposition process,a complete picture of urban debris transport can be created,supporting effective culvert and trash screen design,watercourse maintenance and blockage risk assessment.This case study highlights that factors beyond watercourse depth and velocity are influential in debris movement within an urban watercourse.Debris dimension and source location upstream are shown to significantly affect the potential for debris to reach a downstream constriction,illustrating a possible distance limitation in nuisance flow debris blockage risk.  相似文献   

2.
Mean daily streamflow records from 44 river basins in Romania with an undisturbed runoff regime have been analyzed for trends with the nonparametric Mann‐Kendall test for two periods of study: 1961–2009 (25 stations) and 1975–2009 (44 stations). The statistical significance of trends was tested for each station on an annual and seasonal basis, for different streamflow quantiles. In order to account for the presence of serial correlation that might lead to an erroneous rejection of the null hypothesis, a trend‐free prewhitening was applied to the original data series. The regional field significance of trends is tested by a bootstrap procedure. Changes in the streamflow regime in Romania are demonstrated. The main identified trends are an increase in winter and autumn streamflow since 1961 and a decrease in summer flow since 1975. The streamflow trends are well explained by recent changes in temperature and precipitation that occurred in the last 50 years. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
During the main phase of large magnetic storms significant energy can be deposited in the ionosphere but produce no commensurate magnetic perturbations on the ground. Consequently, models designed to predict and specify thermospheric energy budgets based on ground magnetic data are negatively impacted. To quantify these effects we compare thermospheric densities predicted by the MSIS model with those inferred from accelerometer measurements by the Gravity Recovery and Climate Experiment (GRACE) satellites during two magnetic storm periods in 2004. Although predictions and measurements are in substantial agreement during quiet times, the model significantly underpredicts densities during storms. Also, the model's maxima occur several hours after observed stormtime peaks. We show that polar cap potentials and magnetospheric electric fields derived from interplanetary parameters measured by the Advanced Composition Explorer satellite are roughly proportional to neutral densities observed by GRACE with lead times of ∼4 h. Finally, ion drift meter data from Defense Meteorological Satellite Program spacecraft suggest that unpredicted positive and negative spikes found in high latitude accelerometer data reflect encounters with strong head and tail thermospheric winds driven by anti-sunward convecting plasma.  相似文献   

4.
This study presents a versatile index for the quantification of hysteretic loops between hydrological variables at the runoff event timescale. The conceptual development of the index is based on a normalization of the input data and the computation of definite integrals at fixed intervals of the independent variable. The sum, the minimum and the maximum of the differences between integrals computed for the rising and the falling curves provide information on the direction, the shape and the extent of the loop. The index was tested with synthetic data and field data from experimental catchments in Northern Italy. Hysteretic relations between streamflow (the independent variable) and soil moisture, depth to water table, isotopic composition and electrical conductivity of stream water (dependent variables) were correctly identified and quantified by the index. The objective quantification of hysteresis by the index allows for the automatic classification of hysteretic loops and thus the determination of differences in hydrological responses during different events. The index was also used to examine the seasonal dynamics in the relation between streamflow and soil moisture and captured the switch in the direction of the loop with changes in event size and antecedent wetness conditions. The sensitivity of the index to the temporal resolution of the measurements and measurement errors was also tested. The index can successfully quantify hysteresis, except for very noisy data or when the temporal resolution of the measurements is not well suited to study hysteresis between the variables. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Litter layers develop across a diverse array of vegetated ecosystems and undergo significant temporal compositional changes due to canopy phenological phases and disturbances. Past research on temporal dynamics of litter interception has focused primarily on litter thickness and leaf fall, yet forest phenophases can change many more litter attributes (e.g., woody debris, bark shedding, and release of reproductive materials). In this study, weekly changes in litter composition over 1 year were used to estimate litter water storage dynamics and model event‐based litter interception. Litter interception substantially reduced throughfall (6–43%), and litter water storage capacity ranged from 1 to 3 mm, peaking when megastrobili release and liana leaf senescence occurred simultaneously during fall 2015. Tropical storm disturbances occurred during the sampling period, allowing evaluation of how meteorological disturbances altered litter interception. High wind speeds and intense rainfall from 2 tropical storms increased litter interception by introducing new woody debris, which, in this study, stored more water than the pre‐existing woody debris. After 2 extreme weather events, a third (Hurricane Hermine) did not increase woody debris (or litter interception), suggesting that the canopy pool of branches susceptible to breakage had been largely depleted. Needle and bark shedding had minor effects on litter interception. Results suggest that the release of reproductive materials and meteorological disturbances appear to be the major compositional drivers of litter interception beyond their obvious contribution to litter thickness.  相似文献   

6.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The development of chloride sensors which can be used for continuous, on‐line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride sensor remained responsive even at low chloride concentrations, where the conductivity electrode was no longer responding to changing chloride levels. With the results, it is believed that the simple chloride sensor could be used for continuous monitoring of groundwater quality.  相似文献   

8.
Information on regional drought characteristics provides critical information for adequate water resource management. This study introduces a method to calculate the probability of a specific area to be affected by a drought of a given severity and demonstrates its potential for calculating both meteorological and hydrological drought characteristics. The method is demonstrated using Denmark as a case study. The calculation procedure was applied to monthly precipitation and streamflow series separately, which were linearly transformed by the Empirical Orthogonal Functions (EOF) method. Denmark was divided into 260 grid-cells of 14×17 km, and the monthly mean and the EOF-weight coefficients were interpolated by kriging. The frequency distributions of the first two (streamflow) or three (precipitation) amplitude functions were then derived. By performing Monte Carlo simulations, amplitude functions corresponding to 1000 years of data were generated. Based on these simulated functions as well as interpolated mean and weight coefficients, long time series of precipitation and streamflow were simulated for each grid-cell. The probability distribution functions of the area covered by a drought and the drought deficit volumes were then derived and combined to produce drought severity-area-frequency curves. These curves allowed an estimation of the probability of an area of a certain extent to have a drought of a given severity, and thereby return periods could be assigned to historical drought events. A comparison of drought characteristics showed that streamflow droughts are less homogeneous over the region, less frequent and last for longer time periods than precipitation droughts.  相似文献   

9.
Low streamflow statistic estimators at ungauged river sites generally have large errors and uncertainties. This can be due to many reasons, including lack of data, complex hydrologic processes, and the inadequate or improper characterization of watershed hydrogeology. One potential solution is to take a small number of streamflow measurements at an ungauged site to either estimate hydrogeologic indices or transfer information from a nearby site using concurrent streamflow measurements. An analysis of four low streamflow estimation techniques, regional regression, regional plus hydrogeologic indices, baseflow correlation, and scaling, was performed within the Apalachicola–Chattahoochee–Flint watershed, a U.S. Geological Survey WaterSMART region in the south‐eastern United States. The latter three methods employ a nominal number of spot measurements at the ungauged site to improve low streamflow estimation. Results indicate that baseflow correlation and scaling methods, which transfer information from a donor site, can produce improved low streamflow estimators when spot measurements are available. Estimation of hydrogeologic indices from spot measurements improves regional regression models, with the baseflow recession constant having more explanatory power than the aquifer time constant, but these models are generally outperformed by baseflow correlation and scaling.  相似文献   

10.
Abstract

The dominant source of streamflow in many mountainous watersheds is snowmelt recharge through shallow groundwater systems. The hydrological response of these watersheds is controlled by basin structure and spatially distributed snowmelt. The purpose of this series of two papers is to simulate spatially varying snowmelt and groundwater response in a small mountainous watershed. This paper examines the spatially and temporally variable snowmelt to be used as input to the groundwater flow modelling described in the second paper. Snowmelt simulation by the Simultaneous Heat and Water (SHAW) model (a detailed process model of the interrelated heat, water and solute movement through vegetative cover, snow, residue and soil) was validated by applying the model to two years of data at three sites ranging from shallow transient snow cover on a west-facing slope to a deep snow drift on a north-facing slope. The simulated energy balances for several melt periods are presented. Snow depth, density, and the magnitude and timing of snow cover outflow were simulated well for all sites.  相似文献   

11.
Despite many recent improvements, ensemble forecast systems for streamflow often produce under‐dispersed predictive distributions. This situation is problematic for their operational use in water resources management. Many options exist for post‐processing of raw forecasts. However, most of these have been developed using meteorological variables such as temperature, which displays characteristics very different from streamflow. In addition, streamflow data series are often very short or contain numerous gaps, thus compromising the estimation of post‐processing statistical parameters. For operational use, a post‐processing method has to be effective while remaining as simple as possible. We compared existing post‐processing methods using normally distributed and gamma‐distributed synthetic datasets. To reflect situations encountered with ensemble forecasts of daily streamflow, four normal distribution parameterizations and six gamma distribution parameterizations were used. Three kernel‐based approaches were tested, namely, the ‘best member’ method and two improvements thereof, and one regression‐based approach. Additional tests were performed to assess the ability of post‐processing methods to cope with short calibration series, missing values or small numbers of ensemble members. We thus found that over‐dispersion is best corrected by the regression method, while under‐dispersion is best corrected by kernel‐based methods. This work also shows key limitations associated with short data series, missing values, asymmetry and bias. One of the improved best member methods required longer series for the estimation of post‐processing parameters, but if provided with adequate information, yielded the best improvement of the continuous ranked probability score. These results suggest guidelines for future studies involving real operational datasets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Influence of large woody debris on sediment scour at bridge piers   总被引:2,自引:0,他引:2  
Large woody debris(LWD) reduces the flow area,deviate the flow and increases the velocity in correspondence of the bridge pier,therefore increases the maximum scour hole depth and accelerates sediment removal.Logs and drifts accumulated on bridge piers are of different dimensions.According to logs characteristics and river morphology,drift accumulations can either extend downstream the bridge pier or they can accumulate totally upstream.This paper aims to analyze the effect of drift accumulation planimetry on bridge pier scour.The experimental investigation has been carried out at the PITLAB hydraulic centre of Civil Engineering Department,University of Pisa,Italy.Drift accumulation was characterized by different relative longitudinal lengths,flow area occlusions,length of longitudinal drift and downstream planimetrical positions relative to the pier center.The experimental investigation has been carried out in clear-water conditions.Several pier sizes,channel widths and sediment materials have been tested.Maximum scour hole in presence of drift accumulation have been compared to the maximum scour hole for an isolated pier.Finally,data were compared with previous literature findings,which highlight the effect of the downstream extension of drift accumulation on bridge pier scour.New relationships have been proposed to predict the effect of drift accumulation on bridge pier scour,both in terms of relative maximum scour and temporal scour evolution.  相似文献   

13.
Diurnal variations in streamflow are becoming acknowledged as a way of analysing how changing climatic conditions and land use affects watersheds but also as a way to understand watersheds as a whole. Yet not many studies from uplands below 900 mm mean annual precipitation zone are available from European countries. During the 2012 growing season, a sampling campaign took place in an upland forested micro‐watershed, Czech Republic (65 ha). Tree sap flow, rainfall and temperature were measured continuously, while streamflow at the discharge point and soil moisture were estimated from short‐term measurements. Short precipitation‐free periods lasting several days were identified for evaluation of trends in diurnal dynamics of both sap flow and streamflow. The results demonstrated that during these periods, the main factor altering streamflow was almost exclusively tree sap flow. A decrease in streamflow was observed during the day and an increase at night. The decline in sap flow after sunset was accompanied by a continuous increase in streamflow throughout the night up to its initial maximum in the morning. The amplitude in diurnal variations reached 18%. The observed time lag between the diurnal variations of sap flow and streamflow was approximately 2 h. Relatively low changes in diurnal dynamics of streamflow pointed out a strong regulatory role of the forest in buffering water discharge from the catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of geomagnetic storm on GPS ionospheric scintillations are studied here using GPS scintillation data recorded at Sanya (18.3°N, 109.5°E; geomagnetic: 7.6°N, 180.8°E), the southmost station in the Chinese longitude region. GPS scintillation/TEC and DMSP data are utilized to show the development of irregularities during the period year 2005 (solar minimum). Statistical analysis of K planetary index (Kp) and amplitude scintillation index (S4) indicates that most storms of the year did not trigger the scintillation occurrence at Sanya. However, cases of scintillation occurring during moderate and strong storm (Dst<−100) periods show clearly that the development of irregularities producing scintillations can be triggered by geomagnetic storms during the low scintillation occurrence season. The effects (trigger or not trigger/inhibit) depend on the maximum dDst/dt determined local time sector, and can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance electric fields. For station Sanya, the maximum dDst/dt determined local time is near the noon (or post-midnight) sector for most storms of the year 2005, which inhibited (or did not trigger) the post-sunset (or post-midnight) scintillation occurrence and then led to the phenomena that the statistical results presented.  相似文献   

15.
国产海底地震仪的时间记录与原始数据精细校正   总被引:3,自引:1,他引:2       下载免费PDF全文
海底地震仪(OBS)的时间记录对数据处理是至关重要的.实践发现,部分国产便携式OBS的数据记录存在较大的内部时间误差,并且实测地震剖面异常的同相轴"断阶"、"倾斜"现象时有发生.我们通过自激自收试验,对这些异常现象进行了验证,确认其来源于OBS数据文件内部时间漂移,以及数据处理程序存在的缺陷.统计表明,A、B型OBS内部时间漂移量在250Hz的预设采样率下为0~40ms,L、S型OBS在100Hz下为0~90ms.这个量级的时间漂移,会对OBS数据处理、计算模拟产生影响.进一步,我们采用计算实际采样间隔、调整采样间隔、数据重采样的方法,对这种误差进行校正,并且改进了相关的OBS数据处理程序.本文的研究加深了对OBS数据时间记录误差的认识,得到了OBS数据文件内部时间漂移的分布规律,使得中等及较大程度的内部时间漂移的精细校正得到重视,进而完善了OBS数据处理步骤和流程,对OBS数据的有效利用进行了重要补充,为国产OBS的广泛使用、仪器研发提供了重要参考.  相似文献   

16.
The response of intermittent catchments to rainfall is complex and difficult to model. This study uses the spatially distributed CATchment HYdrology (CATHY) model to explore how the frequency of daily rainfall (λ) can affect the hydrologic regime of intermittent catchments. After a multi-objective calibration and validation of CATHY against experimental measurements of streamflow and groundwater levels in a catchment used as a pasture, the role of λ in affecting streamflow characteristics was explored using different scenarios. With different values of λ for the dry and wet periods of the year, CATHY showed that a series of frequent rainfall events was often associated with incipient streamflow, independent of the season. Activation of streamflow during the wet season was related to multiple factors and was not often associated with the shallow groundwater levels near the outlet of the catchment. The interplay between rainfall depth and intensity acted as the most important factor for the generation of streamflow. Using the difference between accumulated rainfall and evapotranspiration as a measure of wetness, saturated subsurface flow mechanism generated streamflow in simulations with wetness at least three times larger than mean wetness of other simulations. Although groundwater uprise near the outlet did not effectively contribute to streamflow in the initial days of flow, it strongly correlated with the magnitude of the runoff coefficient. Values of λ close or equal to the maximum value in the wet season can sustain the connectivity between groundwater and streamflow in the riparian zone. This connectivity increases the catchment wetness, which consequently results in an increase of the generated streamflow. Our study showed that rainfall regimes characterized by different λ were able to identify distinct flow regimes typical of either intermittent, ephemeral, or nonflowing catchments. Decrease of λ in the wet season is likely associated with a reduction of streamflow, with a shift of flow regime from intermittent to ephemeral or no-flow.  相似文献   

17.
Imaging pre‐salt reflections for data acquired from the coastal region of the Red Sea is a task that requires prestack migration velocity analysis. Conventional post‐stack time processing lacks the lateral inhomogeneity capability, necessary for such a problem. Prestack migration velocity analysis in the vertical time domain reduces the velocity–depth ambiguity that usually hampers the performance of prestack depth‐migration velocity analysis. In prestack τ‐migration velocity analysis, the interval velocity model and the output images are defined in τ (i.e. vertical time). As a result, we avoid placing reflectors at erroneous depths during the velocity analysis process and thus avoid inaccurately altering the shape of the velocity model, which in turn speeds up the convergence to the true model. Using a 1D velocity update scheme, the prestack τ‐migration velocity analysis produces good images of data from the Midyan region of the Red Sea. For the first seismic line from this region, only three prestack τ‐migration velocity analysis iterations were required to focus pre‐salt reflections in τ. However, the second line, which crosses the first line, is slightly more complicated and thus required five iterations to reach the final, reasonably focused, τ‐image. After mapping the images for the two crossing lines to depth, using the final velocity models, the placements of reflectors in the two 2D lines were consistent at their crossing point. Some errors occurred due to the influence of out‐of‐plane reflections on 2D imaging. However, such errors are identifiable and are generally small.  相似文献   

18.
The acquisition of reliable discharge estimates is crucial in hydrological studies. This study demonstrates a promising acoustic method for measuring streamflow at high sampling rate for a long period using the fluvial acoustic tomography system (FATS). The FATS recently emerged as an innovative technique for continuous measurements of streamflow. In contrast to the traditional point/transect measurements of discharge, the FATS enables the depth‐averaged and range‐averaged flow velocity along the ray path to be measured in a fraction of a second. The field test was conducted in a shallow gravel‐bed river (0.9 m deep under low‐flow conditions, 115 m wide) for 1 month. The parameters (stream direction and bottom elevation) required for calculating the streamflow were deduced by a nonlinear regression to the discharge data from the well‐established rating curve. The cross‐sectional average velocities were automatically calculated from the acoustic data, which were collected on both riverbanks every 30 s. The FATS was connected to the internet so that the real‐time flow data could be obtained. The FATS captured discharge variations at a cut‐off frequency of approximately 70 day?1. The stream exhibited temporal discharge changes at multiple time scales ranging from a few tens of minutes to days. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

20.
Simple runoff models with a low number of model parameters are generally able to simulate catchment runoff reasonably well, but they rely on model calibration, which makes their use in ungauged basins challenging. In a previous study it has been shown that a limited number of streamflow measurements can be quite informative for constraining runoff models. In practice, however, instead of performing such repeated flow measurements, it might be easier to install a stream level logger. Here, a dataset of 600+ gauged basins in the USA was used to study how well models perform when only stream level data, rather than streamflow data, are available. A runoff model (the HBV model) was calibrated assuming that only stream level observations were available, and the simulations were evaluated on the full observed streamflow record. The results indicate that stream level data alone can already provide surprisingly good model simulation results in humid catchments, whereas in arid catchments some form of quantitative information (e.g. a streamflow observation or a regional average value) is needed to obtain good results. These results are encouraging for hydrological observations in data scarce regions as level observations are much easier to obtain than streamflow measurements. Based on runoff modelling, it might even be possible to derive streamflow time series from the level data obtained from loggers, satellites or community‐based approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号