首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region – where a pond is located in the stream channel – shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow.  相似文献   

3.
Nutrient dynamics in karst agroecosystems remain poorly understood, in part due to limited long‐term nested datasets that can discriminate upland and in‐stream processes. We present a 10‐year dataset from a karst watershed in the Inner‐Bluegrass Region of central Kentucky, consisting of nitrate (nitrate‐N [NO3?]), dissolved reactive phosphorus (DRP), total organic carbon (TOC), and total ammoniacal‐N (TAN) measurements at nested spring and stream sites as well as flowrate at the watershed outlet. Hydrograph separation techniques were coupled with multiple linear regression and Empirical Mode Decomposition time‐series analysis to determine significance of seasonal processes and to generate continuous estimates of nutrient pathway loadings. Further, we used model results of benthic algae growth and decomposition dynamics from a nearby watershed to assess if transient storage in algal biomass could explain differences in spring and downstream watershed nutrient loading. Results highlight statistically significant seasonality for all nutrients at stream sites, but only for NO3? at springs with longitudinal variability showing significant decreases occurring from spring to stream sites for NO3? and DRP, and significant increases for TOC and TAN. Pathway loading analysis highlighted the importance of slow flow pathways to source approximately 70% of DRP and 80% of NO3?. Results for in‐stream dynamics suggest that benthic autotroph dynamics can explain summer deviations for TOC, TAN, and DRP but not NO3?. Regarding upland dynamics, our findings agree well with existing perceptions in karst for N pathways and upland source seasonality but deviate from perceptions that karst conduits are retentive of P, reflecting the limited buffering capacity of the soil profile and conduit sediments in the Inner‐Bluegrass. Regarding in‐stream fate, our findings highlighted the significance of seasonally driven nutrient processing in the bedrock‐controlled streambed to influence nutrient fluxes at the watershed outlet. Contrary to existing perceptions, we found high N attenuation and an unexplained NO3? sink in the bedrock stream, leading us to postulate that floating macrophytes facilitate high rates of denitrification.  相似文献   

4.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   

5.
Hydrological studies across varied climatic and physiographic regions have observed small changes in the ‘states of wetness’; based on average soil moisture, can lead to dramatic changes in the amount of water delivered to the stream channel. This non-linear behaviour of the storm response has been attributed to a critical switching in spatial organization of shallow soil moisture and hydrologic connectivity. However, much of the analysis of the role of soil moisture organization and connectivity has been performed in small rangeland catchments. Therefore, we examined the relationship between hydrologic connectivity and runoff response within a temperate forested watershed of moderate relief. We have undertaken spatial surveys of shallow soil moisture over a sequence of storms with varying antecedent moisture conditions. We analyse each survey for evidence of hydrologic connectivity and we monitor the storm response from the catchment outlet. Our results show evidence of a non-linear response in runoff generation over small changes in measures of antecedent moisture conditions; yet, unlike the previous studies of rangeland catchments, in this forested landscape we do not observe a significant change in geostatistical hydrologic connectivity with variations in antecedent moisture conditions. These results suggest that a priori spatial patterns in shallow soil moisture in forested terrains may not always be a good predictor of critical hydrologic connectivity that leads to threshold change in runoff generation, as has been the case in rangeland catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage to water flow from hillslopes to streams. This form of hydrologic connectivity may not explain the hydrologic response of catchments that have network(s) of preferential flow paths, for example, soil pipes, which can provide intrinsic connectivity between hillslopes and streams. Duplex soils are known for developing perched water tables on hillslopes and fostering lateral flows, but the connectivity of localized perched water tables on hillslopes with soil pipes has not been fully established. The objectives of this study were to characterize pipeflow dynamics during storm events, the relationships between perched water tables on hillslopes and pipeflows, and their threshold behaviour. Two well‐characterized catchments in loess soil with a fragipan were selected for study because they contain multiple, laterally extensive (over 100 m) soil pipe networks. Hillslopes were instrumented with shallow wells adjacent to the soil pipes, and the wells and pipe collapse features were equipped with pressure transducers. Perched water tables developed on hillslopes during a wetting up period (October–December) and became well connected spatially across hillslope positions throughout the high flow period (January–March). The water table was not spatially connected on hillslopes during the drying out (April–June) and low flow (July–September) periods. Even when perched water tables were not well‐connected, water flowing through soil pipes provided hydrologic connectivity between upper hillslopes and catchment outlets. Correlations between soil pipeflow and perched water tables depended on the size and location of soil pipes. The threshold relationship between available soil‐moisture index plus storm precipitation and pipeflow was dependent on the season and strongest during dry periods and not high‐flow seasons. This study demonstrated that soil pipes serve as a catchment backbone of preferential flow paths that provide intrinsic connectivity between upper hillslopes and streams.  相似文献   

8.
The primary objective of the Watershed Model Studies Project, reported herein, was to ascertain the effect of selected watershed characteristics on hydrograph parameters under a rainfall simulator. Since most of the runoff contributing to the peak flow was found to emanate from the lower half of the drainage, a measure of watershed eccentricity utilizing easily measured properties in that area is derived and evaluated as a reliable predictor of peak magnitude. In the process of isolating watershed shape, slope, size, drainage pattern, and soil depth were isolated and, along with rainfall intensity, direction of storm movement, and antecedent moisture conditions, evaluated for the models. Studies were made into the similarities between the models and real world watersheds. Three of the several conclusions are 1) the models exhibit hydrologic responses similar to those of a wide range of real watersheds; 2) watershed shape, of itself, does not have a tremendous effect on peak magnitude, and 3) watershed eccentricity is an effective, easily measured, meaningful, and useful expression of watershed shape insofar as that characteristic affects maximum peak flows and certain time parameters of the hydrograph.  相似文献   

9.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt as well as groundwater connectivity. In mountainous regions with limestone and dolomite geology, bedrock formations can host karst aquifers, which play a significant role in snowmelt–discharge dynamics. However, mapping complex karst features and the resulting surface-groundwater exchanges at large scales remains infeasible. In this study, timeseries analysis of continuous discharge and specific conductance measurements were combined with gridded snowmelt predictions to characterize seasonal streamflow response and evaluate dominant watershed controls across 12 monitoring sites in a karstified 554 km2 watershed in northern Utah, USA. Immense surface water hydrologic variability across subcatchments, years and seasons was linked to geologic controls on groundwater dynamics. Unlike many mountain watersheds, the variability between subcatchments could not be well described by typical watershed properties, including elevation or surficial geology. To fill this gap, a conceptual framework was proposed to characterize subsurface controls on snowmelt–discharge dynamics in karst mountain watersheds in terms of conduit flow direction, aquifer storage capacity and connectivity. This framework requires only readily measured surface water and climatic data from nested monitoring sites and was applied to the study watershed to demonstrate its applicability for evaluating dominant controls and climate sensitivity.  相似文献   

11.
For snowmelt-driven flood studies, snow water equivalent (SWE) is frequently estimated using snow depth data. Accurate measurements of snow depth are important in providing data for continuous hydrologic simulations of such watersheds. A new hydrologic fidelity metric is proposed in this study to evaluate the potential contribution of particular snow depth datasets to flow characteristics using observed data and hydrologic modeling using the Variable Infiltration Capacity (VIC) model. Data-based hydrologic fidelity of snow depth measurements is defined as a categorical skill score between the snow depth in the watershed and the hydrograph peak or volume at the watershed outlet. Similarly, model-based hydrologic fidelity is defined as a categorical skill score between the model-simulated snow depth and the model-simulated hydrograph peak or volume. The proposed framework is illustrated using the Pecatonica River watershed in the USA, indicating which sites have a higher hydrologic fidelity, which is preferred in hydrologic studies.  相似文献   

12.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
We report an empirical analysis of the hydrologic response of three small, highly impervious urban watersheds to pulse rainfall events, to assess how traditional stormwater management (SWM) alters urban hydrographs. The watersheds vary in SWM coverage from 3% to 61% and in impervious cover from 45% to 67%. By selecting a set of storm events that involved a single rainfall pulse with >96% of total precipitation delivered in 60 min, we reduced the effect of differences between storms on hydrograph response to isolate characteristic responses attributable to watershed properties. Watershed-average radar rainfall data were used to generate local storm hyetographs for each event in each watershed, thus compensating for the extreme spatial and temporal heterogeneity of short-duration, intense rainfall events. By normalizing discharge values to the discharge peak and centring each hydrograph on the time of peak we were able to visualize the envelope of hydrographs for each group and to generate representative composite hydrographs for comparison across the three watersheds. Despite dramatic differences in the fraction of watershed area draining to SWM features across these three headwater tributaries, we did not find strong evidence that SWM causes significant attenuation of the hydrograph peak. Hydrograph response for the three watersheds is remarkably uniform despite contrasts in SWM, impervious cover and spatial patterns of land cover type. The primary difference in hydrograph response is observed on the recession limb of the hydrograph, and that change appears to be associated with higher storm-total runoff in the watersheds with more area draining to SWM. Our findings contribute more evidence to the work of previous authors suggesting that SWM is less effective at attenuating urban hydrographs than is commonly assumed. Our findings also are consistent with previous work concluding that percent impervious cover may have greater influence on runoff volume than percent SWM coverage.  相似文献   

15.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   

16.
Permafrost and fire are important regulators of hydrochemistry and landscape structure in the discontinuous permafrost region of interior Alaska. We examined the influence of permafrost and a prescribed burn on concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and other solutes ( , Ca2+, K+, Mg2+, Na+) in streams of an experimentally burned watershed and two reference watersheds with varying extents of permafrost in the Caribou–Poker Creeks Research Watershed in interior Alaska. The low‐permafrost watershed has limited permafrost (3%), the high‐permafrost watershed has extensive permafrost (53%), and the burn watershed has intermediate permafrost coverage (18%). A three end‐member mixing model revealed fundamental hydrologic and chemical differences between watersheds due to the presence of permafrost. Stormflow in the low‐permafrost watershed was dominated by precipitation and overland flow, whereas the high‐permafrost watershed was dominated by flow through the active layer. In all watersheds, organic and groundwater flow paths controlled stream chemistry: DOC and DON increased with discharge (organic source) and base cations and (from weathering processes) decreased. Thawing of the active layer increased soil water storage in the high‐permafrost watershed from July to September, and attenuated the hydrologic response and solute flux to the stream. The FROSTFIRE prescribed burn, initiated on 8 July 1999, elevated nitrate concentrations for a short period after the first post‐fire storm on 25 July, but there was no increase after a second storm in September. During the July storm, nitrate export lagged behind the storm discharge peak, indicating a flushing of soluble nitrate that likely originated from burned soils. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.  相似文献   

18.
Discharge from karst springs contains a mixture of conduit and matrix water, but the variations in groundwater mixing are poorly known. Storm events present an opportunity to try to map flow components because water entering during storms is more dilute and provides a tracer as it mixes with pre‐event water along the flowpath from the recharge area to discharge at a spring. We used hysteresis plots of Mg/Ca ratios in a spring in the Cumberland Valley of Pennsylvania to map conduit (higher Ca) vs. diffuse (higher Mg) sources of recharge. We observed two types of temporal heterogeneity: within a storm event and from storm to storm. The timing of the variation in Mg/Ca suggested sources of mixing waters. An increase in the Mg/Ca ratio at the beginning of some storms while conductivity declined suggested diffuse recharge through the epikarst. The rapid changes in Mg/Ca ratios for low‐intensity events probably occurred as the rainfall waxed and waned and illustrate that a variety of flowpaths are available at this spring because additional flushing of Mg occurred. In contrast, the conductivity hysteresis began with dilute water initially and rotation was similar from storm to storm. Hysteresis plots of the Mg/Ca ratio have the potential of revealing more of the complexity in discharge than conductivity alone. A better understanding of flow components in karst is needed to protect these aquifers as a groundwater resource.  相似文献   

19.
Although many studies over the past several decades have documented the importance of subsurface stormflow (SSF) in hillslopes, its formation is still not well understood. Therefore, we studied SSF formation in the vadose soil zone at four different hillslopes during controlled sprinkling experiments and natural rainfall events. Event and pre‐event water fractions were determined using artificially traced sprinkling water and 222Rn as natural tracer. SSF formation and the fraction of pre‐event water varied substantially at different hillslopes. Both intensity of SSF and fraction of pre‐event water depended on whether SSF in preferential flow paths was fed directly from precipitation or was fed indirectly from saturated parts of the soil. Soil water was rapidly mobilized from saturated patches in the soil matrix and was subsequently released into larger pores, where it mixed with event water. Substantial amounts of pre‐event water, therefore, were contained in fast flow components like subsurface storm flow and also in overland flow. This finding has consequences for commonly used hydrograph separation methods and might explain part of the ‘old water paradox’. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In cockpit karst landscapes, fluxes from upland areas contribute large volumes of water to low-lying depressions and stream flow. Hydrograph hysteresis and similarity between monitoring sites is important for understanding the space–time variability of hydrologic responses across the “hillslope–depression–stream” continuum. In this study, the hysteretic feature of hydrographs was assessed by characterizing the loop-like relationships between responses at upstream sites relative to subsurface discharge at the outlet of a small karst catchment. A classification of hydrograph responses based on the multi-scale smoothing Kernel -derived distance classifies the hydrograph responses on the basis of similarities between hillslope and depression sites, and those at the catchment outlet. Results demonstrate that the temporal and spatial variability of hydrograph hysteresis and similarity between hillslope flow and outlet stream flow can be explained by the local heterogeneity of depression aquifer. Large depression storage deficits emerging in the highly heterogeneous aquifer produce strong hysteresis and multiple relationships of upstream hydrographs relative to the outlet subsurface discharge. In contrast, when depression storage deficits are filled during consecutive rainfall events, depression hydrographs at the high permeability sites are almost synchronous or exhibit a monotonous function with the hydrographs at the outlet. This reduced hydrograph hysteresis enhances preferential flow paths in fractured rocks and conduits that can accelerate the hillslope flow to the outlet. Therefore, classification of hydrograph similarities between any upstream sites and the catchment outlet can help to identify the dominant hydrological functions in the heterogeneous karst catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号