首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
South Cameroon is located in a tropical and tectonically quiescent region, with landscapes characterized by thick highly weathered regolith, indicative of the long‐term predominance of chemical weathering over erosion. Currently this region undergoes huge changes due to accelerated mutations related to a growing population and economical developments with associated needs and increasing pressures on land and natural resources. We analysed two of the main south Cameroon rivers: the Nyong River and Sanaga River. The Sanaga catchment undergoes a contrasted tropical climate from sub‐humid mountainous and humid climate and is impacted by deforestation, agriculture, damming, mining and urbanization, especially in the Mbam sub‐basin, draining the highly populated volcanic highlands. By contrast, the Nyong catchment, only under humid tropical climate, is preserved from anthropogenic disturbance with low population except in the region of Yaoundé (Méfou sub‐basin). Moreover the Nyong basin is dam‐free and less impacted by agriculture and logging. We explore both denudation temporal variability and the ratio between chemical and physical denudation through two catchment‐averaged erosion and denudation datasets. The first one consists of an 11‐year long gauging dataset, while the second one comes from cosmogenic radionuclides [CRNs, here beryllium‐10 (10Be)] from sand sampled in the river mainstreams (timescale of tens to hundreds of thousands of years). Modern fluxes estimated from gauging data range from 5 to 100 m/Ma (10 to 200 t/km2/yr); our calculations indicate that the usual relative contribution of chemical versus physical denudation is 60% and 40%, respectively, of the total denudation. Beryllium‐10 denudation rates and sediment fluxes range from 4.8 to 40.3 m/Ma or 13 to 109 t/km2/yr, respectively, after correction for quartz enrichment. These fluxes are slightly less than the modern fluxes observed in Cameroon and other stable tropical areas. The highest 10Be‐derived fluxes and the highest physical versus chemical denudation ratios are attributed to anthropogenic impact. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Despite the importance of tropical ecosystems for climate regulation, biodiversity, water and nutrient cycles, only a few Critical Zone Observatories (CZOs) are located in the tropics. Among these, most are in humid climates, while very few data exist for semi-arid and sub-humid climates, due to the difficulty of estimating hydro-geochemical balances in catchments with ephemeral streams. We contribute to fill this gap by presenting a meteorological and hydro-geochemical dataset acquired at the Mule Hole catchment (4.1 km2), a pristine dry deciduous forest located in a biosphere reserve in south India. The dataset consists of time series of variables related to (i) meteorology, including rainfall, air temperature, relative humidity, wind speed and direction, and global radiation, (ii) hydrology, including water level and discharge at the catchment outlet, (iii) hydrogeology, including manual (monthly) and/or automated (from 15 min to hourly) groundwater levels in nine piezometers and (iv) geochemistry, including suspended sediment content in the stream and chemical composition of rainfall (event based), groundwater (monthly sampling) and stream water (storm events, 15 min to hourly frequency with an automatic sampler). The time series extend from 2003 to 2019. Measurement errors are minimized by frequent calibration of sensors and quality checks, both in the field and in the laboratory. Despite these precautions, several data gaps exist, due to occasional access restriction to the site and instrument destruction by wildlife. Results show that large seasonal and interannual variations of climatic conditions were reflected in the large variations of stream flow and groundwater recharge, as well as in water chemical composition. Notably, they reveal a long-term evolution of groundwater storage, suggesting hydrogeological cycles on a decadal scale. This dataset, alone or in combination with other data, has already allowed to better understand water and element cycling in tropical dry forests, and the role of forest diversity on biogeochemical cycles. As tropical ecosystems are underrepresented by Critical Zone Observatories, we expect this data note to be valuable for the global scientific community.  相似文献   

3.
Laurie Boithias  Yves Auda  Stéphane Audry  Jean-Pierre Bricquet  Alounsavath Chanhphengxay  Vincent Chaplot  Anneke de Rouw  Thierry Henry des Tureaux  Sylvain Huon  Jean-Louis Janeau  Keooudone Latsachack  Yann Le Troquer  Guillaume Lestrelin  Jean-Luc Maeght  Pierre Marchand  Pierre Moreau  Andrew Noble  Anne Pando-Bahuon  Kongkeo Phachomphon  Khambai Phanthavong  Alain Pierret  Olivier Ribolzi  Jean Riotte  Henri Robain  Emma Rochelle-Newall  Saysongkham Sayavong  Oloth Sengtaheuanghoung  Norbert Silvera  Nivong Sipaseuth  Bounsamay Soulileuth  Xaysatith Souliyavongsa  Phapvilay Sounyaphong  Sengkeo Tasaketh  Chanthamousone Thammahacksa  Jean-Pierre Thiebaux  Christian Valentin  Olga Vigiak  Marion Viguier  Khampaseuth Xayyathip 《水文研究》2021,35(5):e14126
Mountain regions of the humid tropics are characterized by steep slopes and heavy rains. These regions are thus prone to both high surface runoff and soil erosion. In Southeast Asia, uplands are also subject to rapid land-use change, predominantly as a result of increased population pressure and market forces. Since 1998, the Houay Pano site, located in northern Lao PDR (19.85°N 102.17°E) within the Mekong basin, aims at assessing the long-term impact of the conversion of traditional slash-and-burn cultivation systems to commercial perennial monocultures such as teak tree plantations, on the catchment hydrological response and sediment yield. The instrumented site monitors hydro-meteorological and soil loss parameters at both microplot (1 m2) and small catchment (0.6 km2) scales. The monitored catchment is part of the network of critical zone observatories named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Houay Pano are (1) rainfall, (2) air temperature, air relative humidity, wind speed, and global radiation, (3) catchment land use, (4) stream water level, suspended particulate matter, bed particulate matter and stones, (5) soil surface features, and (6) soil surface runoff and soil detachment. The dataset has already been used to interpret suspended particulate matter and bed particulate matter sources and dynamics, to assess the impact of land-use change on catchment hydrology, soil erosion, and sediment yields, to understand bacteria fate and weed seed transport across the catchment, and to build catchment-scale models focused on hydrology and water quality issues. The dataset may be further used to, for example, assess the role of headwater catchments in large tropical river basin hydrology, support the interpretation of new variables measured in the catchment (e.g., contaminants other than faecal bacteria), and assess the relative impacts of both climate and land-use change on the catchment.  相似文献   

4.
Tropical volcanic islands are biodiversity hotspots where the Critical Zone (CZ) still remains poorly studied. In such steep topographic environments associated with extreme climatic events (cyclones), deployment and maintenance of monitoring equipment is highly challenging. While a few Critical Zone Observatories (CZOS) are located in tropical volcanic regions, none of them includes a Tropical Montane Cloud Forest (TMCF) at the watershed scale. We present here the dataset of the first observatory from the French network of critical zone observatories (OZCAR) located in an insular tropical and volcanic context, integrating a ‘Tropical Montane Cloud Forest’: The ERORUN-STAFOR observatory. This collaborative observatory is located in the northern part of La Réunion island (Indian Ocean) within the 45.0 km2 watershed of Rivière des Pluies (i.e., Rainfall river) which hosts the TMCF of Plaines des Fougères, one of the best preserved natural habitats in La Réunion Island. Since 2014, the ERORUN-STAFOR monitoring in collaboration with local partners collected a multidisciplinary dataset with a constant improvement of the instrumentation over time. At the watershed scale and in its vicinity, the ERORUN-STAFOR observatory includes 10 measurement stations covering the upstream, midstream and downstream part of the watershed. The stations record a total of 48 different variables through continuous (sensors) or periodic (sampling) monitoring. The dataset consists of continuous time series variables related to (i) meteorology, including precipitation, air temperature, relative humidity, wind speed and direction, net radiation, atmospheric pressure, cloud water flux, irradiance, leaf wetness and soil temperature, (ii) hydrology, including water level and temperature, discharge and electrical conductivity (EC) of stream, (iii) hydrogeology, including (ground)water level, water temperature and EC in two piezometers and one horizontally drilled groundwater gallery completed by soil moisture measurements under the canopy. The dataset is completed by periodic time series variables related to (iv) hydrogeochemistry, including field parameters and water analysis results. The periodic sampling survey provides chemical and isotopic compositions of rainfall, groundwater, and stream water at different locations of this watershed. The ERORUN-STAFOR monitoring dataset extends from 2014 to 2022 with an acquisition frequency from 10 min to hourly for the sensor variables and from weekly to monthly frequency for the sampling. Despite the frequent maintenance of the monitoring sites, several data gaps exist due to the remote location of some sites and instrument destruction by cyclones. Preliminary results show that the Rivière des Pluies watershed is characterized by high annual precipitation (>3000 mm y−1) and a fast hydrologic response to precipitation (≈2 h basin lag time). The long-term evolution of the deep groundwater recharge is mainly driven by the occurrence of cyclone events with a seasonal groundwater response. The water chemical results support existing hydrogeological conceptual models suggesting a deep infiltration of the upstream infiltrated rainfall. The TMCF of Plaine des Fougères shows a high water storage capacity (>2000% for the Bryophytes) that makes this one a significant input of water to groundwater recharge which still needs to be quantified. This observatory is a unique research site in an insular volcanic tropical environment offering three windows of observation for the study of critical zone processes through upstream-midstream-downstream measurements sites. This high-resolution dataset is valuable to assess the response of volcanic tropical watersheds and aquifers at both event and long-term scales (i.e., global change). It will also provide insights in the hydrogeological conceptual model of volcanic islands, including the significant role of the TMCFs in the recharge processes as well as the watershed hydrosedimentary responses to extreme climatic events and their respective evolution under changing climatic conditions. All data sets are available at https://doi.org/10.5281/zenodo.7983138 .  相似文献   

5.
The impact of intensive farming on chemical weathering in the Critical Zone is still an open question. Extensively instrumented and monitored over the last 50 years, the Orgeval Critical Zone Observatory (CZO) in France is an observation site impacted by intensive farming since the 1960s. The Orgeval observatory represents an ideal place to study the response and resilience capability of the Critical Zone under agricultural stress. This paper investigates the chemical composition of different water bodies in two nested catchments of the Orgeval CZO, including rainfall, springs, rivers, and rocks, over one and half hydrological year. We show that elemental and strontium isotopic ratios are powerful to constrain the origin of the elements. The results show that the river chemistry at the outlet of the two nested catchments is dominated by rain inputs (particularly atmospheric dust dissolution) and the chemical weathering of limestone and gypsum. Fertilizer input is clearly visible, although the distinction between gypsum dissolution and fertilizer inputs needs more investigation. The mixtures of water masses inferred from our data are in good agreement with the hydrological context of the watershed, that is, a multilayered aquifer structure. At the main outlet of the CZO, we estimate that the input of ocean‐derived solutes through rainfall represents 7 t km?2 year?1, on the same order of magnitude as the net fertilizer input (10 t km?2 year?1), and that rock weathering releases 50 t km?2 year?1. Including previously published physical erosion rates, we estimate that the total denudation rate (physical and chemical) of the Orgeval CZO is 20 mm (1,000 year)?1, which, along with the entire Seine watershed, is among the lowest chemical denudation rates for carbonate terrains under temperate climate. Chemical denudation is about 10 times higher than physical erosion in the Orgeval CZO. The consumption of CO2 by rock weathering is estimated to be between 265.103 and 360.103 molC km2 year?1, similar for the two nested catchments. Compared with the rivers, the springs show a higher CO2 consumption rate that suggests, as pointed out earlier, a enhancement of carbonate dissolution linked to nitrification and thus fertilizer application. The hyporheic zone appears to be a hot spot in the carbon cycle at the Orgeval CZO. This study sheds light on the complex, anthropocenic, interplay between geology, climate, and human activities that characterize and that take place in intensive agriculture regions.  相似文献   

6.
Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability, yet little is known about the initial soil forming processes on karst terrain. Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory, Guizhou Province, Southwest China. We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock(marls). Atmospheric inputs from dust were also detected.  相似文献   

7.
The water balance is an essential tool for hydrologic studies and quantifying water-balance components is the focus of many research catchments. A fundamental question remains regarding the appropriateness of water-balance closure assumptions when not all components are available. In this study, we leverage in-situ measurements of water fluxes and storage from the Southern Sierra Critical Zone Observatory (SSCZO) and the Kings River Experimental Watersheds (KREW) to investigate annual water-balance closure errors across large (1016–5389 km2) river basins and small (0.5–5 km2) headwater-catchment scales in the southern Sierra Nevada. The results showed that while long-term water balance in river basins can be closed within 10% of precipitation, in the smaller headwater catchments as much as a quarter of precipitation remained unaccounted for. A detailed diagnosis of this water-balance closure error using distributed soil moisture measurements in the top 1 m suggests an unaccounted deeper storage and a net groundwater export from the headwater catchments. This imbalance was also found to be very sensitive to the timescales over which water-balance closures were attempted. While some of the closure errors in the simple water balance can be attributed to measurement uncertainties, we argue for a broader consideration of groundwater exchange when evaluating hydrological processes at headwater scales, as the assumption of negligible net groundwater exchange may lead to an overestimation of fluxes derived from the water balance method.  相似文献   

8.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This work presents a preliminary mineralogical characterization of Nb-Ta oxide minerals from alluvial placers located in the Ngoura area,eastern Cameroon.The heavy minerals are characteristic of short hydromechanical transport and highlight the stability of Nb-Ta oxides during the weathering and transport.Nb-Ta mineralization in placer deposits from the Ngoura area may derive from local sedimentation.The assemblage of Nb-Ta oxides in the studied placers consists of tapiolite-(Fe) and tantalite-(Mn).Tapiolite-(Fe) exhibits high concentrations in Ta_2O_5(78.07-80.46 wt%) and FeO(12.18-13.66 wt%) and plots within a narrow range of Ta~*(0.900-0.933) and Mn~*(0.037-0.119),which correspond to the ranges typically observed in tapiolite-(Fe) worldwide.Tantalite-(Mn) shows Ta_2O_5 contents ranging from 62.17 to 69.45 wt%,Nb_2O_5 from 12.09 to 17.37 wt%,MnO from 7.63 to 12.49 wt%and FeO from 1.48 to 6.62 wt%.It is also characterized by a wider range of Mn~~*(0.538-0.891) and relatively homogeneous Ta/(Ta+Nb)(0.683-0.779) ratios.Texturally,the studied Nb-Ta minerals exhibit oscillatory zoning characterized by bright Ta-rich zones alternating with dark Nb-rich zones.This oscillatory zoning is progressive in some minerals and the alternating bands may appear regular to wavy with gradual transitions.Oscillatory zoning in Nb-Ta oxides from the Ngoura placers is considered to be a primary magmatic feature and is tentatively explained as a result of magmas mixing,rapid cooling or degassing/decompression of the igneous system.The geomorphology and the tropical humid climate of the eastern region offer suitable conditions for the deposition of alluvial placers.Therefore,niobium-tantalum minerals from the Ngoura placers must have been sourced from the weathering and erosion of alkaline granites and pegmatites widespread in the study area.  相似文献   

10.
Intensive agricultural land use can have detrimental effects on landscape properties, greatly accelerating soil erosion, with consequent fertility loss and reduced agricultural potential. To quantify the effects of such erosional processes on hillslope morphology and gain insight into the underlying dynamics, we use a twofold approach. First, a statistical analysis of topographical features is conducted, with a focus on slope and gradient distributions. The accelerated soil erosion is shown to be fingerprinted in the distribution tails, which provide a clear statistical signature of this human-induced land modification. Theoretical solutions are then derived for the hillslope morphology and the associated creep and runoff erosion fluxes, allowing us to distinguish between the main erosional mechanisms operating in disturbed and undisturbed areas. We focus our application on the landscape at the Calhoun Critical Zone Observatory in the US Southern Piedmont, where severe soil erosion followed intensive cotton cultivation, resulting in highly eroded and gullied hillslopes. The observed differences in hillslope morphologies in disturbed and undisturbed areas are shown to be related to the disruption of the natural balance between soil creep and runoff erosion. The relaxation time required for the disturbed hillslopes to reach a quasi-equilibrium condition is also investigated. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
As the thin layer at the Earth's terrestrial surface, the critical zone(CZ) ranges from the vegetation canopy to the aquifer or the interface between saprolite and bedrock and varies greatly in space. In the last decade, much attention has been paid to the establishment of Critical Zone Observatories(CZOs) that focus on various aspects of CZ science over different time scales. However, to the best of our knowledge, few studies have explicitly contributed to CZ classification or regionalization;thus, the spatial patterns of similar CZs have not been clearly identified. This study proposed a three-category CZ classification scheme by integrating environmental factors that greatly affect the transfer of energy and mass in the Earth's near-surface environment and thus dominate CZ formation and evolution, i.e., climate, parent material, soil type, groundwater table depth,geomorphology and land use. The main goal was to highlight the zonality of these driving forces, of which the high-category classification units were overlaid to delineate the CZ boundaries. The CZ regionalization of China was performed as a case study,resulting in 44 major regions(1 st category), 100 submajor regions(2 nd category) and 1448 regions(3 rd category). The spatial distributions and driving factors of the ten largest regions were identified, followed by a simple comparison of the CZO network.Then, the proposed CZ regionalization was compared with recent studies on regionalization in China to evaluate its successes and weaknesses. By linking together CZ studies from the last decade, we advocate that a theoretical framework integrating the CZ evolution processes with ecological functions acts as one of the frontiers of CZ science. Our study demonstrates that the proposed three-category CZ classification scheme effectively identifies the spatial variations in CZs and could thus be further applied in other areas to advance terrestrial environmental research and provide decision support for the sustainable management of natural resources.  相似文献   

12.
This work relates to the debate on the fossil organic carbon (FOC) input in modern environments and its possible implication for the carbon cycle, and suggests the use of Rock‐Eval 6 pyrolysis as a relevant tool for tracking FOC in such environments. Considering that such a delivery is mainly due to supergene processes affecting the continental surface, we studied organic matter in different reservoirs such as bedrocks, alterites, soils and rivers in two experimental catchments at Draix (Alpes de Haute Provence, France). Samples were subjected to geochemical (Rock‐Eval 6 pyrolysis) investigations and artificial bacterial degradations. After comparing the geochemical fingerprint of samples, geochemical markers of FOC were defined and tracked in the different reservoirs. Our results confirm the contribution of FOC in modern soils and rivers and display the various influences of weathering and erosional processes on the fate of FOC during its exchange between these pools. In addition, the contrasting behaviour of these markers upon the supergene processes has also highlighted the refractory or labile characters of the fossil organic matter (FOM). Bedrock to river fluxes, controlled by gully erosion, are characterized by a qualitative and quantitative preservation of FOM. Bedrock to alterite fluxes, governed by chemical weathering, are characterized by FOC mineralization without qualitative changes in deeper alterites. Alterite to soils fluxes, controlled by (bio)chemical weathering, are characterized by strong FOC mineralization and qualitative changes of FOM. Thus weathering and erosional processes induce different FOM evolution and affect the fate of FOC towards the global carbon cycle. In this study, gully erosion would involve maintenance of an ancient sink for the global carbon cycle, while (bio)chemical processes provide a source of CO2. Finally, this study suggests that Rock‐Eval 6 pyrolysis can be considered as a relevant tool for tracking FOC in modern environments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The Dissolved Organic Carbon (DOC) content of rivers is the most significant part of the carbon cycle migration in the basin under consideration, and it is the basis for a comprehensive understanding of the regional carbon cycle. In this study, we periodically collected samples from four monitoring stations in the Xiying River Basin of the Qilian Mountains in the northern Qinghai-Tibet Plateau. We calculated the fluxes of organic carbon in the rivers within the study area and have discussed the influencing factors of DOC concentration in these rivers. The results showed that: (a) The DOC concentration and transport flux of the Xiying river showed significant seasonal changes. The DOC concentration during summer and autumn was higher than that in winter and spring, and the output flux in summer and autumn accounted for approximately 88.3% of the total annual output. (b) Precipitation runoff has a higher DOC concentration than meltwater runoff. Climate factors, river-water chemical characteristics, and seasonal frozen-soil changes in the river basin have significant effects on the river DOC concentration and transport flux. (c) Larger runoff causes higher DOC concentrations in rivers. Runoff is the primary means of carbon migration in the inland river basin. Carbon migration is significant from the upstream to the middle and downstream sections of the inland river basin.  相似文献   

14.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   

15.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The analysis of physicochemical variables and selected dissolved elements was performed on the Apure River waters for 15 months. The variables pH, alkalinity, dissolved O2, conductivity and Na, Ca, Mg and Cd concentrations showed maximum values during low water, whereas K, Si, Fe, Al, Mn, Zn, Cu, Cr and dissolved organic carbon (DOC) showed maximum concentrations during rising and high water. Five important factors were found to control the amount and temporal variability of the dissolved elements: lithology, hydrology, vegetation–floodplain processes, redox conditions and organic complexation. Weathering of silicates, carbonates and evaporites in the Andes provides most of the proportion of Na, Ca, Mg and HCO3? to waters. The temporal variability of these ions is controlled by a dilution process. Although Si can be taken up by the biomass, Si and K can be leached from the floodplain by weathering of clays. Microbial decay of the submerged plants in the floodplain during the inundation periods provides DOC and K to river waters and changes the redox conditions in water. The changing redox conditions control the solubility of Mn, Zn and Fe. Dissolved Mn is a function of pH‐dependent redox process, whereas Zn solubility is controlled by scavenging of Zn during the oxidation of Mn2+ to MnO2. Positive relationships between Al, Fe, Cu, Cr and DOC suggest that these elements are complexed by organic colloids generated in the floodplain. Moreover, the binding capacity of Fe with DOC increases under reducing conditions. Although Cd seems to be provided by weathering in the Andes, several processes can affect the mobility of Cd during transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
为明确三峡水库支流澎溪河回水区的碳收支特征,以澎溪河高阳平湖水域为研究对象,建立了河道型水库主要路径碳收支估算方法,对高阳平湖从2011年9月至2012年8月一个完整水文周年内主要路径的碳通量进行了收支动态分析.结果表明,2011年9月至2012年8月,澎溪河高阳平湖水域河流输入的碳通量为133548.55 t C,输出的碳通量为125651.82 t C,水-气界面的扩散碳通量为762.56 t C,消落带土-气界面的扩散碳通量为123.74 t C,水中气泡的释放碳通量为0.38 t C,降水输入的碳通量为104.58 t C,全年高阳平湖水域碳的净积累量为7114.63 t C,宏观上呈现碳积累特征;澎溪河高阳平湖水域水体碳素总体上呈现出河道型水库特有的纵向输移特征.高阳平湖水域上游大量碳素的输入及其在高阳平湖水域的滞留可能会是该水域水-气界面温室气体释放的主要来源.尽管总体上高阳平湖全年呈现出碳积累的特点,但一些方法依然存在不确定性(水-气界面扩散碳通量和气泡释放碳通量的时空异质性等),需要更系统、更长期的工作予以验证或改进.  相似文献   

18.
Continental weathering plays a dominant role in regulating the global carbon cycle, soil chemistry and nutrient supply to oceans. The CO2-mediated silicate weathering acts as a major CO2 sink, whereas sulphuric acid-mediated carbonate dissolution releases CO2 to the atmosphere–ocean system. In this study, dissolved major ions and silica concentrations of two tropical (Damodar and Subarnarekha) river systems from India have been measured to constrain the type and rate of chemical weathering for these basins. The total dissolved solids (TDS) of these rivers, a measure of total solute supply from all possible sources, are about 2–3 times higher than that of the global average for rivers. Mass balance calculations involving inverse modelling estimate that 63 ± 11% of total cations are derived from rock weathering, of which 27 ± 7% of cations are supplied through silicate weathering. The sulphide-S concentrations are estimated by comparing the water chemistry of these two rivers with that of a nearby river (Brahmani) with similar lithology but no signatures of sulphide oxidation. The outflows of Damodar and Subarnarekha rivers receive 17% and 55% of SO4 through sulphide oxidation, respectively. The sulphide oxidation fluxes from the ore mining areas, such as upper Damodar (0.52 × 109 mol/yr) and lower Subarnarekha (0.66 × 109 mol/yr) basins, are disproportionally (~9 times) higher compared to their fractional areal coverage to the global drainage area. The corresponding CO2 release rate (2.84 × 104 mol/km2/yr) for the Damodar basin is lower by five times than its CO2 uptake rate (1.38 × 105 mol/km2/yr). The outcomes of this study underscore the dominance of sulphide oxidation in controlling the dissolved chemical (cationic and sulphur) fluxes.  相似文献   

19.
The Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) is unique due to its extremely rapid weathering rates. The watershed is incised into a quartz diorite that has developed a large knickzone defining the river profile. Regolith thickness within the watershed generally decreases from 20 to 30 m at the ridges to several meters in the quartz diorite-dominated valley to tens of centimeters near the major river knickpoint, as determined from previous studies. Above the knickzone, we observe spheroidal corestones, but below this weathering is much less apparent. Measured erosion rates from previous studies are also high in the knickzone compared with upper elevations within the river profile. A suite of near-surface geophysical methods (i.e. ground penetrating radar and terrain conductivity) capable of fast data acquisition in rugged landscapes, was deployed at kilometer scales to characterize critical zone structure. Concentrations of chaotic ground penetrating radar (GPR) reflections and diffraction hyperbolas with low electrical conductivity were observed in vertical zones that outcrop at the land surface as areas of intense fracturing and spheroidally weathered corestones. The width of these fractured and weathered zones showed an increase with proximity to the knickpoint, and was attributed to dilation of these sub-vertical fractures near the knickpoint, as postulated theoretically by a stress model calculated for the topographic variability across the knickzone in the Rio Icacos, and that shows a release of compressive stress near the knickpoint. We hypothesize that erosion rates increase in the knickzone because of this inferred dilation of fractures. Specifically, opened fractures could enhance access of water and in turn promote spalling, erosion, and spheroidal weathering. This study shows that ground-based hydrogeophysical methods used at the landscape-scale (traditionally applied at smaller scales) can be used to explore critical zone architecture at the scales needed to explain the extreme variability in erosion rates across river profiles. © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Organic compounds are removed from the atmosphere and deposited to the Earth's surface via precipitation. In this study, we quantified variations of dissolved organic carbon (DOC) in precipitation during storm events at the Shale Hills Critical Zone Observatory, a forested watershed in central Pennsylvania (USA). Precipitation samples were collected consecutively throughout the storm during 13 events, which spanned a range of seasons and synoptic meteorological conditions, including a hurricane. Further, we explored factors that affect the temporal variability by considering relationships of DOC in precipitation with atmospheric and storm characteristics. Concentrations and chemical composition of DOC changed considerably during storms, with the magnitude of change within individual events being comparable or higher than the range of variation in average event composition among events. Although some previous studies observed that concentrations of other elements in precipitation typically decrease over the course of individual storm events, results of this study show that DOC concentrations in precipitation are highly variable. During most storm events, concentrations decreased over time, possibly as a result of washing out of the below‐cloud atmosphere. However, increasing concentrations that were observed in the later stages of some storm events highlight that DOC removal with precipitation is not merely a dilution response. Increases in DOC during events could result from advection of air masses, local emissions during breaks in precipitation, or chemical transformations in the atmosphere that enhance solubility of organic carbon compounds. This work advances understanding of processes occurring during storms that are relevant to studies of atmospheric chemistry, carbon cycling, and ecosystem responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号