首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its δ18O showed large interannual variation depending on the amount of summer rainfall. The soil water δ18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the δ18O of soil water increased due to percolation of summer rain with high δ18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the δ18O because of the low δ18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra‐annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

3.
Catchment hydrological responses to precipitation inputs, particularly during exceptionally large storms, are complex and variable, and our understanding of the associated runoff generation processes during those events is limited. Hydrological monitoring of climatically and hydrologically distinct catchments can help to improve this understanding by shedding light on the interplay between antecedent soil moisture conditions, hydrological connectivity, and rainfall event characteristics. This knowledge is urgently needed considering that both the frequency and magnitude of extreme precipitation events are increasing worldwide as a consequence of climate change. In autumn 2018, we installed water level sensors to monitor stream water and near-stream groundwater levels at two Mediterranean forest headwater catchments with contrasting hydrological regimes: Font del Regàs (sub-humid climate, perennial flow regime) and Fuirosos (semi-arid climate, intermittent flow regime). Both catchments are located in northeastern Spain, where the extratropical cyclone Gloria hit in January 2020 and left in ca. 65 h outstanding accumulated rainfalls of 424 mm in Font del Regàs and 230 mm in Fuirosos. During rainfall events of low mean intensity, hydrological responses to precipitation inputs at the semi-arid Fuirosos were more delayed and more variable than at the sub-humid Font del Regàs. We explain these divergences by differences in antecedent soil moisture conditions and associated differences in catchment hydrological connectivity between the two catchments, which in this case are likely driven by differences in local climate rather than by differences in local topography. In contrast, during events of moderate and high mean rainfall intensities, including the storm Gloria, precipitation inputs and hydrological responses correlated similarly in the two catchments. We explain this convergence by rapid development of hydrological connectivity independently of antecedent soil moisture conditions. The data set presented here is unique and contributes to our mechanistic understanding on how streams respond to rainfall events and exceptionally large storms in catchments with contrasting flow regimes.  相似文献   

4.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   

5.
Because of the importance of snow for river discharge in mountain regions, hydrological research often focuses on seasonally snow-covered zones. However, in many basins the majority of the land surface area is intermittently snow-covered. Discharge monitoring in these areas is less common, so their contributions to downstream rivers remain largely unknown. We evaluated hydrological differences between three intermittently snow-covered (mean annual Jan 1–Jul 3 snow persistence <60%) and two seasonally snow-covered headwater catchments in the Colorado Front Range. We compared water balance variables to evaluate how and why discharge differs between the snow zones and estimated the relative contributions from each snow zone to regional river discharge. We focused on water years 2016–2019 and used a combination of in situ sensors and regional climate datasets. Annual discharge from the intermittent snow zone was low for all three catchments (10–77 mm), despite covering a wide range in annual snow persistence (25%–64%), whereas annual discharge from the seasonal snow zone was up to 73 times higher. Soil moisture in the seasonal snow zone was above field capacity for longer periods of time than in the intermittent snow zone, and the intermittent snow zone was uniquely subject to soil freezing (up to 102 days per year). For most of the year, potential evapotranspiration exceeded rainfall and snowmelt inputs in the intermittent snow zone, but was lower than rainfall and snowmelt inputs in the seasonal snow zone. This is likely a primary driver of the differences in soil moisture and discharge for catchments with a seasonal versus intermittent snow cover. Despite the large difference in discharge between these two snow zones, the intermittent snow zone contributed about a quarter of the discharge in the regional river, highlighting the importance of studying discharge generation across all elevations.  相似文献   

6.
Vegetation indices derived from remote sensing data still remain to be used for analysing the relationship between climatic factors and vegetation seasonal phenology in middle latitudes with subtropical conditions forests such as the Canarian laurel forest. The Garajonay National Park, located in the La Gomera Island, protects one of the best preserved examples of the Macaronesian laurel forest, due to the cloud banks produced by trade winds, with rainfall and temperature field data showing a clear Mediterranean climatic pattern. We have analysed seasonal vegetation indices trend for different types of forest inside the Garajonay National Park using normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) products derived from moderate resolution imaging spectrometer (MODIS) Aqua data for two hydrological years (October 2003 to September 2005) in relationship with the existing field climatic data: rainfall, net fog water and temperature. Maximum annual EVI maps show the highest vegetation indices in the laurel forest of La Gomera that occur during the dry season, mainly in late spring to early summer, with EVI temporal profiles showing that valley‐bottom laurel forest areas have the most clear seasonal trend. Difference maps of EVI values between months with the lowest and highest rainfall of each hydrological year clearly confirm the highest photosynthetic activity in the laurel forest during the dry season. In addition, these forests show a significative temporal correlation between EVI values and the temperature in the forest (p < 0·001). Our results prove the absence of summer drought stress in the laurel forest implying that the fog drip income is high enough to maintain enough soil moisture to allow the forest fully transpire when temperatures are higher. As the laurel forest of La Gomera occurs in the main recharge area of the island's aquifer system, our analysis of EVI data suggests that fog drip constitutes a key hydrological factor. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Western US forest ecosystems and downstream water supplies are reliant on seasonal snowmelt. Complex feedbacks govern forest–snow interactions in which forests influence the distribution of snow and the timing of snowmelt but are also sensitive to snow water availability. Notwithstanding, few studies have investigated the influence of forest structure on snow distribution, snowmelt and soil moisture response. Using a multi‐year record from co‐located observations of snow depth and soil moisture, we evaluated the influence of forest‐canopy position on snow accumulation and snow depth depletion, and associated controls on the timing of soil moisture response at Boulder Creek, Colorado, Jemez River Basin, New Mexico, and the Wolverton Basin, California. Forest‐canopy controls on snow accumulation led to 12–42 cm greater peak snow depths in open versus under‐canopy positions. Differences in accumulation and melt across sites resulted in earlier snow disappearance in open positions at Jemez and earlier snow disappearance in under‐canopy positions at Boulder and Wolverton sites. Irrespective of net snow accumulation, we found that peak annual soil moisture was nearly synchronous with the date of snow disappearance at all sites with an average deviation of 12, 3 and 22 days at Jemez, Boulder and Wolverton sites, respectively. Interestingly, sites in the Sierra Nevada showed peak soil moisture prior to snow disappearance at both our intensive study site and the nearby snow telemetry stations. Our results imply that the duration of soil water stress may increase as regional warming or forest disturbance lead to earlier snow disappearance and soil moisture recession in subalpine forests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The degree to which the hydrologic water balance in a snow-dominated headwater catchment is affected by annual climate variations is difficult to quantify, primarily due to uncertainties in measuring precipitation inputs and evapotranspiration (ET) losses. Over a recent three-year period, the snowpack in California's Sierra Nevada fluctuated from the lightest in recorded history (2015) to historically heaviest (2017), with a relatively average year in between (2016). This large dynamic range in climatic conditions presents a unique opportunity to investigate correlations between annual water availability and runoff in a snow-dominated catchment. Here, we estimate ET using a water balance approach where the water inputs to the system are spatially constrained using a combination of remote sensing, physically based modelling, and in-situ observations. For all 3 years of this study, the NASA Airborne Snow Observatory (ASO) combined periodic high-resolution snow depths from airborne Lidar with snow density estimates from an energy and mass balance model to produce spatial estimates of snow water equivalent over the Tuolumne headwater catchment at 50-m resolution. Using observed reservoir inflow at the basin outlet and the well-quantified snowmelt model results that benefit from periodic ASO snow depth updates, we estimate annual ET, runoff efficiency (RE), and the associated uncertainty across these three dissimilar water years. Throughout the study period, estimated annual ET magnitudes remained steady (222 mm in 2015, 151 mm in 2016, and 299 mm in 2017) relative to the large differences in basin input precipitation (547 mm in 2015, 1,060 mm in 2016, and 2,211 mm in 2017). These values compare well with independent satellite-derived ET estimates and previously published studies in this basin. Results reveal that ET in the Tuolumne does not scale linearly with the amount of available water to the basin, and that RE primarily depends on total annual snowfall proportion of precipitation.  相似文献   

9.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

10.
Flooding is one of the greatest disasters that produces strong effects on the ecosystem and livelihoods of the local population. Flood frequency is expected to increase globally making its risk assessment an urgent issue. In spring-summer 2017, an extreme flooding occurred in the Indigirka River lowland of Northeastern Siberia that inundated a large area. In this study, the extent and climatic drivers of the flooding were determined using the results of field observations, satellite images, and climate reanalysis dataset, and its possible effects on the ecosystem were discussed. In 2017, a significant lowland area of around 16,016 km2 was covered with water even in July, which was 5,217 km2 (around 4% of the total area) greater than the water-covered area in 2015 when usual hydrological condition in the area was observed. The hydrographic signature obtained for the Indigirka River water level in 2017 was unusual. Although the water level rose sharply at the end of May (which was typical for the Arctic region), it did not fall afterwards and even increased again to an annual daily maximum value in the middle of July. The climate reanalysis dataset obtained for the temporal–spatial variations of snow water equivalent, snowmelt, and runoff over the lowland revealed that a large amount of snowmelt runoff in June and July 2017 produced a large water-covered area and unusually high river water levels that lasted until summer. Snow depth from winter to spring was largest in 2017 over the period from 2009 to 2017, and the surface of the lower reach of the lowland was partially covered with snow even in the end of June due to the extreme snowfall that occurred in October 2016. Such unusual hydrological conditions waterlogged most trees over the lowland, which caused serious ecosystem devastation and changes in the material cycle.  相似文献   

11.
The effects of afforestation on water resources are still controversial. The aim of this paper is to (i) analyse the hydrological response of an afforested area in the Central Pyrenees and (ii) compare the hydrological response of an afforested area with the response observed in a natural undisturbed forest. The Araguás catchment was cultivated until the 1950s, and then afforested with pines in an effort to control the active degradation processes. The hydrological response was variable and complex, because the discharge was generated by a combination of distinct runoff processes. The hydrological response showed that (i) afforestation produced moderate peak discharges, stormflows and recession limbs, and long rising limbs; (ii) no one single variable was able to explain the hydrological response: rainfall volume and intensity did not explain the hydrological response and antecedent rainfall and initial discharge (indicating antecedent moisture conditions) did play an important role; (iii) seasonal differences were observed suggesting different runoff generating processes; and (iv) the effect of forest cover on peak discharges became less important as the size of the hydrological event increased. The stormflow coefficient showed a clear seasonal pattern with an alternation between a wet period, when the catchment was hydrologically responsive, and a dry summer period when the catchment rarely responded to any event, and two transitional periods (wetting and drying). Compared with a natural forest, the afforested area recorded greater flows and peak discharges, faster response times and shorter recession limbs. Afforestation reduces the water yield and the number of floods compared with non‐vegetated areas and abandoned lands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Subalpine forests are hydrologically important to the function and health of mountain basins. Identifying the specific water sources and the proportions used by subalpine forests is necessary to understand potential impacts to these forests under a changing climate. The recent “Two Water Worlds” hypothesis suggests that trees can favour tightly bound soil water instead of readily available free-flowing soil water. Little is known about the specific sources of water used by subalpine trees Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce) in the Canadian Rocky Mountains. In this study, stable water isotope (δ18O and δ2H) samples were obtained from S. fir and Engelmann spruce trees at three points of the growing season in combination with water sources available at time of sampling (snow, vadose zone water, saturated zone water, precipitation). Using the Bayesian Mixing Model, MixSIAR, relative source water proportions were calculated. In the drought summer examined, there was a net loss of water via evapotranspiration from the system. Results highlighted the importance of tightly vadose zone, or bound soil water, to subalpine forests, providing insights of future health under sustained years of drought and net loss in summer growing seasons. This work builds upon concepts from the “Two Water Worlds” hypothesis, showing that subalpine trees can draw from different water sources depending on season and availability. In our case, water use was largely driven by a tension gradient within the soil allowing trees to utilize vadose zone water and saturated zone water at differing points of the growing season.  相似文献   

13.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   

14.
Semi-arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape-scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)-Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud-based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data-based calibrations to vegetation structure (leaf-area index, LAI), and open-source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach-scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach-scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent-flow stream reaches. At perennial-flow reaches, ET correlated significantly with temperature, whilst at intermittent-flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water-use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.  相似文献   

15.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   

16.
In the last two decades the major focus of study in forest water and carbon balances in eastern Siberia has been on the effect of rain during the growing season. Little attention has been paid to the contribution of snowmelt water. The results of the present study indicate that weather conditions during the snowmelt period as well as the soil moisture conditions carried from the previous year's growing season strongly determined the water availability for the forest ecosystem at the beginning of the next growing season. In the forest–grassland intermingled ecosystem of lowland Central Yakutia, gradual snowmelt water flow from the forest into the adjacent grassland depressions increased when soil moisture was high and air temperature was low, whereas low soil moisture and high air temperatures accelerated soil thawing and consequently snowmelt water infiltration into the forest soil. We found that snow depth did not determine the volume of snowmelt water moving to the grassland depression since the thermokarst lake water level in the adjacent grassland was about 25 cm lower in 2005 than in May 2006, even though maximum snow depth reached 57 cm and 43 cm in the winter of 2004–05 and 2005–06, respectively. The contribution of snowmelt water to forest growth as well as the flow of water from the forest to the grasslands showed a strong annual variability. We conclude that warmer springs and high variability in precipitation regimes as a result of climate change will result in more snowmelt water infiltration into the forest soil when the previous year's precipitation is low while more snowmelt water will flow into the thermokarst lake when the previous year's precipitation is high. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Understanding the interactions of vegetation and soil water under varying hydrological conditions is crucial to aid quantitative assessment of land-use sustainability for maintaining water supply for humans and plants. Isolating and estimating the volume and ages of water stored within different compartments of the critical zone, and the associated fluxes of evaporation, transpiration, and groundwater recharge, facilitates quantification of these soil–plant-water interactions and the response of ecohydrological fluxes to wet and dry periods. We used the tracer-aided ecohydrological model EcH2O-iso to examine the response of water ages of soil water storage, groundwater recharge, evaporation, and root-uptake at a mixed land use site, in northeastern Germany during the drought of 2018 and in the following winter months. The approach applied uses a dynamic vegetation routine which constrains water use by ecological mechanisms. Two sites with regionally typical land-use types were investigated: a forested site with sandy soils and a deep rooting zone and a grassland site, with loamier soils and shallower rooting zone. This results in much younger water ages (<1 year) through the soil profile in the forest compared to the grass, coupled with younger groundwater recharge. The higher water use in the forest resulted in a more pronounced annual cycle of water ages compared to the more consistent water age in the loamier soil of the grasslands. The deeper rooting zone of the forested site also resulted in older root-uptake water usage relative to soil evaporation, while the grassland site root-uptake was similar to that of soil evaporation. Besides more dynamic water ages in the forest, replenishment of younger soil waters to soil storage was within 6 months following the drought (cf. >8 months in the grassland). The temporal evaluation of the responsiveness of soil and vegetation interactions in hydrologic extremes such as 2018 is essential to understand changes in hydrological processes and the resilience of the landscape to the longer and more severe summer droughts predicted under future climate change.  相似文献   

18.
Among the potential effects of climate change on subalpine forest ecosystems during the winter season, the shift in snowline towards higher altitudes and the increase in frequency of rain events on the snowpack are of particular interest. Here, we present the results of a 2‐year field experiment conducted in a forest stand (Larix decidua) in NW Italy at 2020 m a.s.l. From 2009 to 2011, we monitored soil physical characteristics (temperature and moisture), and soil and soil solution chemistry, in particular carbon (C) and nitrogen (N) forms and their change in time, as affected by simulated late snowpack accumulation and rain on snow events. Late snowpack accumulation determined a stronger effect on soil thermal and moisture regimes than rain on snow events. Also soil chemistry was significantly affected by late snowfall simulation. Although microbial biomass C and N were not reduced by soil freezing, soil contents of the more labile dissolved organic carbon and inorganic N increased when the soil was affected by mild/hard freezing. Variations in the soil solution were shifted with respect to those observed in soil, with an increase in N‐NO3? concentrations occurring during spring and summer. This study highlights the potential N loss in subalpine soils under changing environmental conditions driven by a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage.  相似文献   

20.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号