首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mountain regions throughout the world face intense development pressures associated with recreational and tourism uses. Despite these pressures, much of the research on bio‐geophysical impacts of humans in mountain regions has focused on the effects of natural resource extraction. This paper describes findings from the first 3 years of a study examining high elevation watershed processes in a region undergoing alpine resort development. Our study is designed as a paired‐watershed experiment. The Ranch Brook watershed (9·6 km2) is a relatively pristine, forested watershed and serves as the undeveloped ‘control’ basin. West Branch (11·7 km2) encompasses an existing alpine ski resort, with approximately 17% of the basin occupied by ski trails and impervious surfaces, and an additional 7% slated for clearing and development. Here, we report results for water years 2001–2003 of streamflow and water quality dynamics for these watersheds. Precipitation increases significantly with elevation in the watersheds, and winter precipitation represents 36–46% of annual precipitation. Artificial snowmaking from water within West Branch watershed currently augments annual precipitation by only 3–4%. Water yield in the developed basin exceeded that in the control by 18–36%. Suspended sediment yield was more than two and a half times greater and fluxes of all major solutes were higher in the developed basin. Our study is the first to document the effects of existing ski area development on hydrology and water quality in the northeastern US and will serve as an important baseline for evaluating the effects of planned resort expansion activities in this area. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

The runoff regime of glacierized headwater catchments in the Alps is essentially characterized by snow and ice melt. High Alpine drainage basins influence distant downstream catchments of the Rhine River basin. In particular, during the summer months, low-flow conditions are probable with strongly reduced snow and ice melt under climate change conditions. This study attempts to quantify present and future contributions from snow and ice melt to summer runoff at different spatial scales. For the small Silvretta catchment (103 km2) in the Swiss Alps, with a glacierization of 7%, the HBV model and the glacio-hydrological model GERM are applied for calculating future runoff based on different regional climate scenarios. We evaluate the importance of snow and ice melt in the runoff regime. Comparison of the models indicates that the HBV model strongly overestimates the future contribution of glacier melt to runoff, as glaciers are considered as static components. Furthermore, we provide estimates of the current meltwater contribution of glaciers for several catchments downstream on the River Rhine during the month of August. Snow and ice melt processes have a significant direct impact on summer runoff, not only for high mountain catchments, but also for large transboundary basins. A future shift in the hydrological regime and the disappearance of glaciers might favour low-flow conditions during summer along the Rhine.

Citation Junghans, N., Cullmann, J. & Huss, M. (2011) Evaluating the effect of snow and ice melt in an Alpine headwater catchment and further downstream in the River Rhine. Hydrol. Sci. J. 56(6), 981–993.  相似文献   

3.
This data note describes the Biscuit Brook and Neversink Reservoir watershed long-term monitoring data that includes: 1) stream discharge, (1983–2020 for Biscuit Brook and 1937–2020 for the Neversink Reservoir watershed), 2) stream water chemistry, 1983–2020, at 4 stations, 3) fish survey data from 16 locations in the watershed 1990–2019, 4) soil chemistry data from 2 headwater sub-watersheds, 1993–2012 and 5) periodic stream water chemistry sampling data from 364 locations throughout the watershed, 1983–2020. The Neversink Reservoir watershed in the Catskill Mountains of New York, USA drains an area of 172.5 km2. The watershed feeds one of six reservoirs in New York City's West of Hudson water supply, which accounts for about 90% of the city's water supply. Biscuit Brook is a 9.63 km2 tributary sub-watershed within the Neversink Reservoir watershed.  相似文献   

4.
Abstract

Using daily suspended sediment and water discharge data, we calculated the current mean annual runoff and Specific Suspended Sediment Yield (SSY) for 66 mountainous and piedmont catchments in Chile. These catchments are located from the extreme north of Chile to Southern Patagonia and cover an exceptionally wide range of climates, slopes, and vegetation. The SSY ranges mainly between 0 and 700 t km-2 year-1 with some exceptions as high as 1780 t km-2 year-1. The SSY increases between the extreme north and 33°S and then decreases toward the south. Sediment and water discharge north of 33°S occur mainly during summer. Farther south the contribution of winter precipitation increases and predominates. When the SSY database is correlated with topographic, climatic and vegetation indices, it is found to correlate significantly with runoff and mean slope only. In order to concentrate on erosion processes in the mountain range, 32 mountainous catchments were selected along a strong north–south SSY gradient between 27°S and 40°S. From north to south, SSY increases strongly with runoff and then decreases, even while runoff keeps increasing. In catchments where SSY is low, although runoff is high, the mean slope is less than 40% and the vegetation cover is greater than 8%. For the other catchments, runoff variations explain 67% of the variance in sediment yields. Thus, SSY seems to be controlled by vegetation cover and slope thresholds. In addition, SSY also correlates with glacier cover. However, a correlation between SSY and seismicity, although possible, is ambiguous.

Citation Pepin, E., Carretier, S., Guyot, J. L. & Escobar, F. (2010) Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation. Hydrol. Sci. J. 55(7), 1190–1205.  相似文献   

5.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Assessments of water resources by using macro‐scale models tend to be conducted at the continental or large catchment scale. However, security of freshwater supplies is a local issue and thus necessitates study at such a scale. This research aims to evaluate the suitability of the Land Processes and eXchanges dynamic global vegetation model (LPX‐DGVM) for simulating runoff for small catchments in the UK. Simulated annual and monthly runoff is compared against the National River Flow Archive streamflow observations from 12 catchments of varying size (500–10 000 km2) and climate regimes. Results show that LPX reproduces observed inter‐annual and intra‐annual runoff variability successfully in terms of both flow timings and magnitudes. Inter‐annual variability in flow timings is simulated particularly well (as indicated by Willmott's index of agreement values of ≥0.7 for the majority of catchments), whereas runoff magnitudes are generally slightly overestimated. In the densely populated Thames catchment, these overestimations are partly accounted for by water consumption. Seasonal variability in runoff is also modelled well, as shown by Willmott's index of agreement values of ≥0.9 for all but one catchment. Absence of river routing and storage from the model, in addition to precipitation uncertainties, is also suggested as contributing to simulated runoff discrepancies. Overall, the results show that the LPX‐DGVM can successfully simulate runoff processes for small catchments in the UK. This study offers promising insights into the use of global‐scale models and datasets for local‐scale studies of water resources, with the eventual aim of providing local‐scale projections of future water distributions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

8.
The Tibetan Plateau (TP) is the “water tower of Asia” and it plays a key role on both hydrology and climate for southern and eastern Asia. It is critical to explore the impact of climate change on runoff for better water resources management in the TP. However, few studies pay attention to the runoff response to climate change in large river systems on the TP, especially in data-sparse upstream area. To complement the current body of work, this study uses two rainfall-runoff models (SIMHYD and GR4J) to simulate the monthly and annual runoff in the upstream catchments of the Yarlung Tsangpo River basin (YTR) under historical (1962–2002) and future (2046–2065 A1B scenario) climate conditions. The future climate series are downscaled from a global climate model (MIROC3.2_hires) by a high resolution regional climate model (RegCM3). The two rainfall-runoff models successfully simulate the historical runoff for the eight catchments in the YTR basin, with median monthly runoff Nash–Sutcliffe Efficiency of 0.86 for SIMHYD and 0.83 for GR4J. The mean annual future temperature in eight catchments show significant increase with the median of +3.8 °C. However, the mean annual future precipitation shows decrease with the median of ?5.8 % except in Lhatse (+2.0 %). The two models show similar modeling results that the mean annual future runoff in most of catchments (seven in eight) shows decrease with the median of ?13.9 % from SIMHYD and ?15.2 % from GR4J. The results achieved in this study are not only helpful for local water resources management, but also for future water utilization planning in the lower reaches region of the Brahmaputra.  相似文献   

9.
Urban growth is a global phenomenon, and the associated impacts on hydrology from land development are expected to increase, especially in peri‐urban catchments. It is well understood that greater peak flows and higher stream flashiness are associated with increased surface imperviousness and storm location. However, the effect of the distribution of impervious areas on runoff peak flow response and stream flashiness of peri‐urban catchments has not been well studied. In this study, a new geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri‐urban catchments with runoff peak flows and stream flashiness. Study sites include 21 suburban catchments in New York representing a range of drainage area from 5 to 189 km2 and average imperviousness from 10% to 48%. On the basis of RNICO, all development patterns are divided into 3 classes: upstream, centralized, and downstream. Results showed an obvious increase in runoff peak flows and decrease in time to peak when moving from upstream to centralized and downstream urbanization classes. This indicates that RNICO is an effective tool for classifying urban development patterns and for macroscale understanding of the hydrologic behavior of small peri‐urban catchments, despite the complexity of urban drainage systems. We also found that the impact of impervious distribution on runoff peak flows and stream flashiness decreases with catchment scale. For small catchments (A < 40 km2), RNICO was strongly correlated with the average (R2 = .95) and maximum (R2 = .91) gaged peak flows due to the relatively efficient subsurface routing through stormwater and sewer networks. Furthermore, the Richards–Baker stream flashiness index in small catchments was positively correlated with fractional impervious area (R2 = .84) and RNICO (R2 = .87). For large catchments (A > 40 km2), the impact of impervious surface distribution on peak flows and stream flashiness was negligible due to the complex drainage network and great variability in travel times. This study emphasizes the need for greater monitoring of discharge in small peri‐urban catchments to support flood prediction at the local scale.  相似文献   

10.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The contribution from agricultural catchments to stream nitrogen and phosphorus concentrations was assessed by evaluation of the chemical composition of these nutrients in agricultural runoff for both surface and subsurface flow pathways. A range of land uses (grazed and ungrazed grassland, cereals, roots) in intensive agricultural systems was studied at scales from hillslope plots (0.5 m2) to large catchment (>300 km2). By fractionating the total nutrient load it was possible to establish that most of the phosphorus was transported in the unreactive (particulate and organic) fraction via surface runoff. This was true regardless of the scale of measurement. The form of the nitrogen load varied with land use and grazing intensity. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were recorded in surface runoff from heavily grazed land. In subsurface flow from small (2 km2) subcatchments and in larger (>300 km2) catchments, organic nitrogen was found to be an important secondary constituent of the total nitrogen load, comprising 40% of the total annual load.  相似文献   

12.
This research develops a one-parameter model of saturated source area dynamics and the spatial distribution of soil moisture. The single required parameter is the maximum soil moisture deficit within the catchment. The concept behind the development of the model comes from the fact that the complexity of topographically-driven runoff generation can be reduced through the use of geomorphological scaling relations. The scaling formulation allows the prediction of the dynamics of saturated source areas as a function of basin-wide soil moisture state. This model offers a number of potential advantages. Firstly, the model parameter is independent of topographic index distribution and its associated scale effects. Secondly, it may be possible to measure this single parameter using field measurements or perhaps remote sensing, which gives the model significant potential for application in ungauged basins. Finally, the fact that this parameter is a physical characteristic of the basin, estimation of this parameter avoids regionalization and parameter transferability problems. The model is tested using rainfall–runoff data from the 10.4 ha experimental catchment known as Tarrawara in Australia, the 37 km2 Town Creek catchment in U.S.A., and the 620 km2 Balaphi and the 850 km2 Likhu sub-catchments of the Koshi river in Nepal. In sub-catchments of Koshi river, the simulation results compare favorably against the calibrated TOPMODEL both in terms of direct runoff and the spatial distribution of soil moisture state. In the Tarrawara and Town Brook catchments, simulation results compare favorably against observed storm runoff using all observed data, without calibration.  相似文献   

13.
There is a need for more isotopic tracer studies at the mesoscale to extend our understanding of catchment transit times and their associated controls beyond smaller experimental sites (typically < 10 km2). This paper, therefore, examines the isotope hydrology of six mesoscale (101–102 km2) sub‐catchments of the 2000 km2 basin of the River Dee in northern Scotland. All the catchments were upland in character (mean altitude > 400 m) with similar suites of soil coverage (predominantly regosols, gleys, peats and podzols), although the relative distribution varied, as did the presence of other landscape features such as aquifers in Quaternary drifts and lakes. Input–output relationships of δ18O in precipitation and runoff revealed contrasting responses and differential damping which were broadly consistent with catchment characteristics. The mean transit times (MTTs) were estimated using a convolution integral with a Gamma distribution as the transfer function. These varied from 528 days in the most responsive catchments to > 800 days in catchments where the tracer signature was most damped. Shorter MTTs were found in sub‐catchments with a higher percentage cover of responsive soils (i.e. regosols, gleys and peats), whilst sub‐catchments with longest MTTs had a higher coverage of free‐draining podzolic and alluvial soils, as well as significant amount of stored water either in fluvio‐glacial aquifers or large lakes. The MTT of all six catchments had the same order of magnitude; this contrasts with studies in the Scottish Highlands with smaller (<10 km2) catchments where MTT has been shown to vary between 60 and 1200 days. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We examined the isotope hydrology of eight, contrasting mesoscale (104–488 km2) catchments characterized by a systematic change in the relative importance of upland and lowland areas that reflects the relative distribution of metamorphic and sedimentary rocks. Precipitation and stream water were monitored over a 12‐month period, and stable isotopes were used to examine spatial variations in the hydrometric and tracer dynamics of the catchments. Isotopic tracers were used to examine the temporal dynamics of different runoff sources, and geochemical tracers (alkalinity) were used to identify the geographic sources of runoff. Input–output relationships of isotopic tracers were explored using a gamma function to fit a transit time distribution, which was used to test the hypothesis that the length of mean transit times increased systematically with the cover of sandstone aquifers in the catchments. However, in three catchments, the increased influence of anthropogenic factors, notably reservoir storage, urban runoff and agricultural abstraction for irrigation, prevented reliable transit time estimation. For sites where tentative mean transit time estimates were possible, these varied from around 1.6 years in upland catchments dominated by metamorphic rocks (>75%) and responsive soils to around 4 years in catchments with 34% sandstone cover and freely draining soils. These preliminary results were consistent with inferences of geochemical tracers on the increased role of sedimentary aquifers as runoff sources in lowland areas, but observation from a larger number of sites is needed to confirm this. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
I. Takken  J. Croke  P. Lane 《水文研究》2008,22(2):254-264
This paper outlines a conceptual and methodological approach to evaluating the risk of road derived runoff delivery, which is based on the principle of hydrological connectivity. Three different types of runoff delivery pathways are identified (stream crossings, gullied pathways and diffuse pathways) and the volume of runoff that may reach the stream through these pathways during a one in 10 year 30 minute event is estimated. The methodology is applied to three catchments of contrasting forest use, both plantation and native. Results show that degree of connectivity of a road depends on catchment characteristics such as the topography, road placement, drain spacing and road and drainage density. Maps outlining the distribution of different delivery pathways within a catchment are used to assess the potential for runoff connectivity. In one of the selected study catchments, the Albert River, greatest potential connectivity can be isolated to a single road. The upper part of this road crosses many tributaries resulting in high connectivity via stream crossings, whereas the lower part of the road is located within the valley bottom, where the majority of drains will contribute runoff during a one in 10 year event through diffuse overland flow. The presented methodology is also used to highlight hot‐spots in terms of runoff and sediment delivery through the creation of risk assessment maps, which allows for the evaluation of different procedures for road rehabilitation. Using examples from the Albert River catchment, we demonstrate that minimizing diffuse overland flow can generally be achieved by the placement of additional road drains, whereas at highly connected road segments the relocation of the road might be the only option. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   

17.
Simultaneous field monitoring of runoff and suspended sediment loads from a 30 ha, artificially‐drained, mixed‐agricultural catchment in Herefordshire, UK indicates field drains are the dominant pathway for the transfer of runoff and sediment to the stream. Surface runoff pathways draining 6·2% of the catchment area transported around 1% of the catchment sediment load, while subsurface runoff in field drains draining 26·5% of the catchment transported around 24% of the sediment load. The explanations offered here for the dominance of drainflow—the spatial limitation of surface runoff generation and low hillslope‐stream connectivity of surface runoff compared with subsurface runoff—are also likely to apply to other artificially‐drained lowland agricultural catchments in the UK. These catchments are usually on poorly‐drained soils, and land management can have a considerable effect on the operation of runoff pathways and the transfer of sediment from hillslope to stream. As a result, subsurface inputs may also dominate sediment transfers in other underdrained catchments. The focus on sediment and pollutant losses via surface runoff pathways means that pollution inputs from subsurface, preferential pathways have been unfairly neglected, and it may be more important to focus on subsurface sediment and sediment‐associated pollution inputs for mitigation rather than inputs from surface pathways. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号