首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Morphology and internal structure of sandwaves in the Bay of Fundy   总被引:1,自引:0,他引:1  
Intertidal sandwaves in the Minas Basin and Cobequid Bay, Bay of Fundy, occur under a wide range of conditions (mean grain size 0.274-1.275 mm; velocity strength index (V1)0.46-3.34; and velocity symmetry index (V2) 0.011-0.294), and they vary from symmetrical to strongly asymmetrical in cross-section. Heights and wavelengths average 0.81 and 37.9 m respectively. They are straight to weakly sinuous and laterally continuous in plan, occasionally show crestal branching reminiscent of wave ripples, and are commonly skewed relative to the strongest currents because of differential migration rates along their length. The average migration rate is 0.11 m/tidal cycle. Megaripples occur on each sandwave crest, at least during spring tides, but the areal extent, sinuosity and size of the megaripples increases as the dominant current speed increases. The megaripples have heights averaging 24% of the sandwave height, are oriented perpendicular to the fastest dominant currents, and have life spans of several tidal cycles. They are believed to be in quasi-equilibrium with the sandwaves and play a key role in sandwave dynamics and internal structure formation: periods of lee face steepening and rapid forward migration (megaripple crest at sandwave brink) alternate with times of non-deposition or erosion and slowed or reversed migration (trough at brink). Dominant-current cross-bedding predominates in the two intergradational varieties of translation structure observed: Inclined Cross-Bedding—decimetre-scale cross-beds separated by gently inclined (9° average) erosional surfaces; and Large-Scale Foresets—cross-beds with thicknesses greater than half the sandwave height, interrupted by weakly erosional to conformable discontinuity surfaces. These are overlain by a vertical growth or repair structure, Complex Cross-Bedded Cosets, that consists of nearly equal volumes of dominant- and subordinate-current cross-beds stacked without a preferred set-boundary dip. The translation structures correspond well to forms predicted by Allen (1980a, fig. 8) but the inclined set boundaries and discontinuity surfaces (master bedding planes) are produced by megaripple troughs rather than by current reversals. Consequently, Allen's regime diagram is unable to predict structure occurrences. The repair structures suggest that ‘curvature-related mass-transport’ (Allen, 1980a, b) is important in tidal sandwave maintenance, although it is not necessarily responsible for sandwave initiation.  相似文献   

2.
The morphology and migration rate of tidal bedforms are important because of their use in interpretation of modern and ancient sediment transport regimes. Tidal flow, megaripple morphology and migration were studied in the mesotidal Mawddach Estuary, North Wales, to examine the veracity of published flow-bedform relationships, quantify spatial variations in migration and assess consequences for palaeoflow reconstruction. Two transects were surveyed along a megarippled intertidal shoal (mean grain size 280 μm) for a period of 22 semi-diurnal tidal cycles. A vertical array of current meters recorded tidal current profiles at the centre of one of the transects. Flood tidal currents dominate at Fegla Fach shoal, with peak velocities over 1 m s?1 at spring tides, and 0.5 m s ?1 at neaps, and bed sediment transport was also flood-dominated. Over the lunar cycle, the morphology of the megaripples on the survey lines was divisible into three phases: 1 the neap mode-consisting of near-moribund two-dimensional (2-D) flood-orientated megaripples of wavelength c. 6 m and height c. 0.2 m; 2 a transitional mode-where, on rising tidal ranges, scour pits formed and developed into 3-D megaripples which underwent net migration with the flood tide; 3 the spring mode-consisting of 3-D megaripples of wavelength c. 4 m and height c. 0.2 m. Despite complete re-orientation by the ebb tide, these were recognizable from one low water survey to the next, and net migration was c. 1 m per tide with the flood tide. We infer the presence of the equilibrium ‘spring tidal form’ occurring as flood-orientated megaripples during the flood tide. The data support previously reported separation of 2-D and 3-D megaripples at a depth to grain size ratio of 8000, and at a depth-mean velocity of the dominant tide (Umaxdom) of 0.75-0.8 m s?1. A migration threshold exists at Umaxdom of c. 0.53-0.57 m s?1. Measures of migration which might be used on preserved sections have been applied to the data. These measures systematically overestimated bedform migration at most stages of the lunar cycle (by <25% at spring tides and <140% in the post-spring transition period), but were accurate when the megaripples had developed into their 'spring tidal form’. There is significant variation of migration rates within the survey populations. We conclude that whilst the occurrence of megaripple cross-sets may be used as a palaeoflow indicator, and sedimentary structures associated with 2-D to 3-D transitions may also be indicative of palaeoflows, there are likely to be significant uncertainties involved in using tidal bundles as an indication of sediment transport rates.  相似文献   

3.
This paper describes the formation, migration and sedimentology of sandwaves along the distal end of Long Point, a 40 km long spit in Lake Erie. Some seven to nine sandwaves occur in a zone over the last 14 km of the spit. They are characteristically 50–100 m wide at the downdrift end, range in length from 350 m to > 1500 m and migrate alongshore at rates that are typically 100–300 m year−1. Measurements over a 7-year period show two forms of alongshore sandwave migration: (1) a migratory jump; and (2) downdrift accretion. The migratory jump is commonly 200–500 m year−1 and results from the onshore migration and welding of an inner nearshore bar to the downdrift end of the sandwave. This in turn leads to emergence of the bar over a distance of several hundred metres downdrift of the sandwave and isolation of the trough landward of the bar. Infilling of the trough abstracts large volumes of sediment from the local sediment transport system and may affect movement of the sandwave in the following year or movement of the next sandwave downdrift. Downdrift accretion commonly results in migration of 50–150 m year−1 and results from the refraction of waves around the distal end of the sandwave and episodic accretion of small swash bars. This mechanism occurs less frequently and appears to reflect a local condition of lower sediment abundance, often triggered by a large migratory jump in the previous year. The process of bar emergence and infilling produces a distinct suite of sedimentary structures associated with the infilling of the landward trough and building of the sandwave berm. The initial shoreline perturbation that generates the sandwave results from onshore migration and welding of inner nearshore bars, and the development and growth of the sandwaves is promoted by refraction of highly oblique waves.  相似文献   

4.
This paper investigates the dynamics of sandwaves in relationship with tidal currents and weather conditions. The studied sandwaves are located in the Dover Straits and are covered by megaripples. These megaripples have migration speeds of mh?1 and slopes of 34°, suggesting the potential for avalanches to occur along the flanks of the sandwave. Tidal cycles without reversing currents were observed during stormy weather. Wind-induced currents lead to a unidirectional migration of megaripples and sandwaves. Well-defined areas without megaripples were observed and correlated with an increase in sandwave height. We propose interpretations for understanding sandwave saturation and migration. To cite this article: D. Idier et al., C. R. Geoscience 334 (2002) 1079–1085.  相似文献   

5.
An experiment was conducted to study megaripple morpho dynamics on a sandy intertidal shoal in a mesotidal mangrove creek (Gordon Creek, Townsville, Australia). Tidal current velocity and depth were recorded with S4 current meters over a period of 35 tides. The tidal megaripples were 0.06–0.2 m in height and 1–2 m in wavelength, and their movement was monitored by (1) electromagnetic bed-elevation probes (which automatically recorded bed level every 2 min at three positions along the survey transect) and (2) daily surveying for 8 days around spring tidals. The tidal currents in Gordon Creek are ebb-dominated, with maximum depth-mean current velocities for the flood and ebb tides of 0.62 and 0.98 m s?1 respectively. Significant bedload transport occurs only during spring tides, and only on the larger of the unequal semi-diurnal tides. Bedload transport is overwhelmingly in the ebb direction. Megaripple migration rates reach 5.6 m per tide in the ebb direction and up to 0.1 m min?1 within individual tides. Within-tide ‘bedform transport rates’are up to 0.29 kg m?1 s?1. The results suggest that for reconstruction of palaeoflows from deposits of preserved fine- to medium-grained sandy tidal megaripples, it is valid to use a depth-averaged velocity of 0.5–0.6 m s?1 as the migration threshold. Velocity thresholds associated with partial or complete reversal of megaripple asymmetry are invalid.  相似文献   

6.
This experimental investigation examined the controls on the geometry of cross‐sets formed by subaqueous dunes. A range of steady, unidirectional flow conditions spanning the field of dune existence was investigated, and aggradation rate ranged from 0 mm s?1 to 0·014 mm s?1. Data from an ultrasonic depth profiler consist of high‐resolution temporal and spatial series of bed profiles from which dune height and length, migration rate and the depth of trough scour were measured. Cross‐set thickness and length were measured from sediment peels. The size and shape of dunes from an equilibrium assemblage change continuously. Individual dunes commonly increase in height by trough scouring and, occasionally, by being caught‐up by the upstream dune. Both types of behaviour occur suddenly and irregularly in time and, hence, do not appear to depend on dunes further upstream. However, dune climbing or flattening is a typical response of dunes that disappear under the influence of the upstream dune. All types of behaviour occur at any flow velocity or aggradation rate. Successive dune‐trough trajectories, defined by dunes showing various behaviours, affect the geometry of the preserved cross‐sets. Mean cross‐set thickness/mean dune height averages 0·33 (±0·7), and mean cross‐set length/mean dune length averages 0·49 (±0·08), and both show no systematic variation with aggradation rate or flow velocity. Mean cross‐set thickness/mean cross‐set length tends to decrease with increasing flow velocity and Froude number, therefore allowing a qualitative estimation of flow conditions. Quantitative analysis of the temporal changes in the geometry and migration rate of individual dunes allows the development of a two‐dimensional stochastic model of dune migration and formation of cross‐sets. Computer realizations produced stacks of cross‐sets of comparable shape and thickness to laboratory flume observations, indicating a good empirical understanding of the variability of dune‐trough trajectories. However, interactions among dunes and aggradation rates of the order of 10?2 mm s?1 should be considered in future improved models.  相似文献   

7.
Evolution and mechanics of a Miocene tidal sandwave   总被引:3,自引:0,他引:3  
A remarkable exposure of Miocene marine molasse in western Switzerland records the evolution of a tidal sandwave over a period of approximately 2 1/2 months. The sandwave is composed of tidal ‘bundles’ in which a sandwave reactivation stage and full vortex stage can be recognized for the dominant flow (ebb tide) and a rippled flood apron overlain by high water drape for the reversed flow. Bundle thicknesses vary systematically through neap–spring cycles, with a periodicity of 27 demonstrating the semi-diurnal lunar control of sedimentation. Waves were an additional component, especially when superimposed on flood tides, producing near-symmetrical combined-flow ripple marks in the flood apron. Tidal current velocities are estimated using critical shear velocities for entrainment, the ripple-dune transition and the dune-plane bed transition. Using appropriate estimates of roughness lengths and a logarithmic velocity law, maximum tidal speeds at 1 m above the bed were approximately 0·6 m sec?1 for ebbs and up to 0·5 m sec?1 for floods. The enhancement by waves of bed shear stress (τwc/τ of approximately 2 for 1 m high waves) under flood currents implies flood tidal velocities closer to 0·2–0·3 m sec?1. Peak instantaneous bedload sediment transport rates using a modified Bagnold equation are nearly 5 times greater under ebb tides than floods. The average net sediment transport rate at springs (0·04 kg m?1 sec?1) is over 10 times greater than at neaps (0·002 kg m?1 sec?1). Comparison with transport rates in modern tidal environments suggests that the marine molasse of Switzerland was deposited under spatially confined and relatively swift tidal flows not dissimilar to those of the present Dutch tidal estuaries.  相似文献   

8.
Previous research suggests that the turbulence-driven suspension process in sand-bed channels is dominated by intermittent, energetic eddies with length scales of the order of channel depth. Because of the scarcity of data on the turbulent suspension process in alluvial channels, the possible variability in suspension intermittency and turbulent frequency content due to contrasts in flow depth, velocity or bedforms remains unclear however. The present study analyses eddy correlation suspension signals from seven deployments in varied flow conditions around a sandy meander bend. Deployment depths at near-bankfull flow stages varied from 2 to 5.5 m, velocities at 0.75–1 m height from 0.6 to 0.9 m s?1 and local mean suspended sand concentrations ranged from 30 to 150 mg L?1 in the intermittence and spectral content of sand suspension between the various deployments are analysed and results are compared with previously published findings. Study data suggest that the dominant eddy sizes involved in sediment mixing across the sensor level are consistently of the order of 1–5 times flow depth and lie within the ‘energy-bearing’ turbulent range. When sand suspension is analysed in the time domain in the various deployments, energetic, burst-like suspension events occupying only 1-5% of the record duration account for 20-90% of the suspension work. The degree of intermittence in the suspension process was observed to increase in deeper flows, where mixing events contributing extreme vertical sediment fluxes appear to be relatively more frequent.  相似文献   

9.
The application of high resolution seismic data using boomer sound source has revealed a wide distribution of large-scale bedforms (sandwaves) on the Southeast Vietnam continental shelf. Bedforms that are a few meters high in wave height and hundreds of meters long in wavelength are primarily developed in the inner shelf (20–40 m) and considered to be formed under the present-day marine hydrodynamic conditions. Those bedforms developed in the deeper water (120 m) of the northernmost part of the continent can be interpreted as the relict morphological features formed during the latest sea-level lowstand of the late Pleistocene period. Two sediment transport paths have been identified on the basis of the bedform’s leeward orientation: northeast-southwest (along-shore) and north-south (cross-shore). A quantitative bottom current map is constructed from sandwave dimensions, surface sediments and measurement data. The strongest current velocities that gradually decrease toward the southwest are indicated by large sandwaves in the north (field B). Water depth, surficial sediment composition and bottom current are three factors that control the development of bedforms.  相似文献   

10.
Flow parameters (velocity and density) for turbidity currents in the Northwest Atlantic Mid-Ocean Channel (NAMOC) have been determined based on two different approaches, channel geometry and grain-size distributions of turbidites. Channel geometry has been obtained by a quantitative morphological analysis of the NAMOC which shows three genetically different segments in the upper 2000 km: (1) an upper 350 km-long ‘equilibrium channel’, (2) a middle 700 km-long ‘modified equilibrium channel’and (3) a lower ‘basement-controlled channel’which is more than 1000 km-long. In contrast to other meandering submarine channels the NAMOC has very low sinuosities and gradients. A consistently higher right-hand levee limits mean flow velocities to 3ms?1 and channel geometry indicates mean flow velocities of 0·86 m s?1 that decrease within the equilibrium channel to 0·05 m s?1. Grain-size distributions on the levees and in the channel suggest strong vertical velocity and density gradients for bank-full flows with velocities of up to 8 m s?1 and excess densities up to 87 kg m?3 at the base, and 0·45 m s?1 and 4 kg m?3 at the top. The internal shear produced by these strong vertical gradients results in a decoupling of the current head and body. Channel geometry appears to be mainly the result of the slowly moving dilute body of the current.  相似文献   

11.
Jaco H. Baas 《Sedimentology》1999,46(1):123-138
A flume study on the development and equilibrium morphology of current ripples in fine sand (D50 = 0·238 mm) was performed to extend an empirical model for current ripple stability in 0·095 mm sand to larger grain sizes. The results of the flume experiments agree with the very fine sand model that current ripple development from a flat bed is largely independent of flow velocity. At all flow velocities, ripples evolve from incipient, through straight, sinuous and non-equilibrium linguoid, to equilibrium linguoid plan morphology. The time needed to achieve an equilibrium linguoid plan form is related to an inverse power of flow velocity and ranges from several minutes to more than hundreds of hours. Average equilibrium height and length are 17·0 mm and 141·1 mm respectively. These values are about 20% larger than in very fine sand. Equilibrium ripple height and length are proportional to flow velocity near the stability field of dunes. In the same velocity range, a characteristic grouping of ripples with smaller ripples migrating on the upstream face of larger ripples was observed. Bed-form development shows a conspicuous two-phase behaviour at flow velocities < 0·49 m s?1. In the first phase of development, ripple height and length increase along an exponential path, similar to that at higher flow velocities, thus reaching intermediate equilibrium values of 14·8 mm and 124·5 mm respectively. After some time, however, a second phase commences, that involves a rapid increase in bed-form size to the typical equilibrium values for 0·238 mm sand. A comparison with literature data shows that the results obtained for 0·238 mm sand agree reasonably well with other flume studies at similar grain size. Yet considerable variability in the relationships between ripple dimensions and flow strength ensues from, among others, underestimation of equilibrium time, shallow flow depths and differences in sediment texture.  相似文献   

12.
Several Holocene turbidites can be correlated across much of Navy Fan through more than 100 sediment core localities. The uppermost muddy turbidite unit is mapped throughout the northern half of the fan; its volume, grain-size distribution and the maximum height of deposition on the basin slopes are known. These parameters can be related to the precise channel morphology and mesotopography revealed by deep-tow surveys. Thus there is sufficient information to estimate detailed flow characteristics for this turbidity current as it moved from fan valley to distal basin plain. On the upper fan, the gradient and the increasing downstream width of the channel and only limited flow overspill suggest that the flow had a Froude number close to 1.0. The sediment associated with the channel indicates friction velocities of about 0.06 m s?1 and flow velocities of about 0.75 m s?1. Using this flow velocity and channel dimensions, sediment concentration (~2×10?3) and discharge are estimated, and from a knowledge of the total volume of sediment deposited, the flow duration is estimated to be from 2 to 9 days. It is shown that the estimates of Froude number, drag coefficient, and sediment concentration are not likely to vary by more than a factor of 2. On the mid-fan, the flow was much thicker than the height of the surface relief of the fan and it spread rapidly. The cross-flow slope, determined from the horizontal extent of turbidite sediment, is used to estimate flow velocity, which is confirmed by consideration of both sediment grain size and rate of deposition. This again allows sediment concentration and discharge to be estimated. The requirements of flow continuity, entrainment of water during flow expansion, and observed sediment deposition provide checks on all these estimates, and provide an integrated picture of the evolution of the flow. The flow characteristics of this muddy turbidity current are well constrained compared to those for more sand-rich late Pleistocene and early Holocene turbidity currents on the fan.  相似文献   

13.
Experimental studies of subcritical, unidirectional flow over upper stage plane beds of medium grained sand reveal the ubiquitous presence of low amplitude bedwaves. Flow depth was 0·11 m, mean flow velocities were 0·86–1·0 m s?1, shear velocities were 0·058–0·71 m s?1 and dimensionless shear stresses were 0·56–0·87. Bedwaves are asymmetrical in profile and range from 0·75 to 11 mm in height (mainly 2–6 mm), from 0·7 to 1·3 m in wavelength and have mean celerities of 10 mm s?1. Flow records suggest that the bedwaves are associated with accelerating flow over the bedwave crests and flow which decelerates and diverges laterally over the troughs. High resolution bed profiling during aggradation of the bed combined with subsequent box coring illustrates that these bedwaves are responsible for the planar laminae characteristic of upper stage plane beds. Lamina preservation is dependent upon the mean aggradation rate and the sequence of bedwaves of different height crossing any point; individual laminae are more readily preserved at higher aggradation rates where the possibility of reworking by later bedwaves is reduced. Laminae are recognized by small changes in grain size and commonly a fining upwards at the top of laminae which is generated by fine grained material infiltrating a lower lamina in the leeside of a bedwave.  相似文献   

14.
Estimating palaeowind strength from beach deposits   总被引:1,自引:0,他引:1  
Abstract The geological record of past wind conditions is well expressed in the coarse gravel, cobble and boulder beach deposits of Quaternary palaeolakes in the Great Basin of the western USA and elsewhere. This paper describes a technique, using the particle‐size distribution of beach deposits, to reconstruct palaeowind conditions when the lakes were present. The beach particle technique (BPT) is first developed using coarse beach deposits from the 1986–87 highstand of the Great Salt Lake in Utah, combined with instrumental wind records from the same time period. Next, the BPT is used to test the hypothesis that wind conditions were more severe than at present during the last highstand of Lake Lahontan (≈ 13 ka), which only lasted a decade or two at most. The largest 50 beach clasts were measured at nine beach sites located along the north, west and south sides of Antelope Island in the Great Salt Lake, all of which formed in 1986–87. At these sites, the largest clast sizes range from 10 to 28 cm (b‐axis), and fetch lengths range from 25 to 55 km. Nearshore wave height was calculated by assuming that the critical threshold velocity required to move the largest clasts represents a minimum estimate of the breaking wave velocity, which is controlled by wave height. Shoaling transformations are undertaken to estimate deep‐water wave heights and, ultimately, wind velocity. Wind estimates for the nine sites, using the BPT, range from 6·5 to 17·4 m s?1, which is in reasonable agreement with the instrumental record from Salt Lake City Airport. The same technique was applied to eight late Pleistocene beaches surrounding the Carson Sink sub‐basin of Lake Lahontan, Nevada. Using the BPT, estimated winds for the eight sites range from 9·7 to 27·1 m s?1. The strongest winds were calculated for a cobble/boulder beach with a fetch of 25 km. Instrumental wind records for the 1992–99 period indicate that wind events of 9–12 m s?1 are common and that the strongest significant wind event (≥ 9 m s?1 for ≥ 3 h) reached an average velocity of 15·5 m s?1. Based on this preliminary comparison, it appears that the late Pleistocene western Great Basin was a windier place than at present, at least for a brief time.  相似文献   

15.
Surface to atmosphere exchange has received much attention in numerical weather prediction models. This exchange is defined by turbulent parameters such as frictional velocity, drag coefficient and heat fluxes, which have to be derived experimentally from high-frequency observations. High-frequency measurements of wind speed, air temperature and water vapour mixing ratio (eddy covariance measurements), were made during the Integrated Ground Observation Campaign (IGOC) of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) at Mahabubnagar, India (16°44N, 77°59E) in the south-west monsoon season. Using these observations, an attempt was made to investigate the behaviour of the turbulent parameters, mentioned above, with respect to wind speed. We found that the surface layer stability derived from the Monin–Obukhov length scale, is well depicted by the magnitude of wind speed, i.e., the atmospheric boundary layer was under unstable regime for wind speeds >4 m s?1; under stable regime for wind speeds <2 m s?1 and under neutral regime for wind speeds in the range of 2–3 m s?1. All the three stability regimes were mixed for wind speeds 3–4 m s?1. The drag coefficient shows scatter variation with wind speed in stable as well as unstable conditions.  相似文献   

16.
During the Late Tortonian, platform‐margin‐prograding clinoforms developed at the south‐western margin of the Guadix Basin. Large‐scale wedge‐shaped deposits here comprise 26 rhythms of mixed carbonate–siliciclastic bedset packages and marl beds. These sediments were deposited on a shallow‐water, temperate‐carbonate distally steepened ramp. A downslope‐migrating sandwave field developed in this ramp, with sandwaves moving progressively down the ramp to the ramp‐slope, where they destabilized, folded and occasionally collapsed. Downslope sandwave migration was induced by currents flowing basinwards. During the Late Tortonian, the Guadix Basin was open north to the Atlantic Ocean via the Dehesas de Guadix Strait and connected east to the Mediterranean Sea through the Almanzora Corridor. According to the proposed current circulation model for the Guadix Basin for this time, surface marine currents from the Atlantic entered the basin from the northern seaway. These currents moved counter‐clockwise and shifted the sediment on the ramp, forming sandwaves that migrated downslope. The development of platform‐margin prograding clinoforms by the basinward sediment‐transport mechanisms inferred here is known relatively poorly in the ancient sedimentary record. Moreover, these wedge‐shaped geometries are similar to those found in some shelves in the Western Mediterranean Sea and could represent an outcrop analogue to (sub)‐recent, platform‐margin clinoforms revealed by high‐resolution seismic studies.  相似文献   

17.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

18.
Primary sedimentary structures exhibiting the diagnostic criteria for single sets of hummocky cross-stratification (Harms et al.) have been found in the surf zone of a storm-wave dominated coastline in the Canadian Great Lakes. Epoxy peels of box cores (0.45 m × 0.30 m) reveal hummocky stratification in well-sorted, fine-grained sands in water depths less than 2 m under conditions of wave breaking and strong longshore currents. The wavelengths of the hummocks (0.3–0.6 m) are somewhat smaller than the norm for their ancient analogues, but the ratios of length to height (8–12) are comparable. Depth of activity rods have been used to identify those hummocks that formed during sediment transport events when the near-bed currents were recorded directly using electromagnetic flowmeters. Results from such experiments clearly identify the hummocky stratification as being produced by an actively growing bedform with little or no lateral migration. Hummocks occur under conditions close to that expected for the upper flat bed. In one vertical sequence, the hummocky cross-stratification is underlain by subhorizontal, planar lamination and overlain by undulatory lamination which grades upward into small-scale, trough cross-lamination of wave ripple origin. This sequence was associated with a single storm and would appear to represent a combined-flow regime sequence with the hummocky structure representing a post-vortex (?) ripple bedform. At the inferred time of hummock formation, near-bed oscillatory flows were dominant and reached maxima of 1.1 m s ?1 with a superimposed longshore current of 0.27 m s?1. Rapid sedimentation associated with vertical growth of the hummocky bedform was triggered by a significant reduction in the orbital currents (by 19%) and'steady'currents (by 67%) while the total bed shear remained high.  相似文献   

19.
Field measurements of the flux and speed of wind-blown sand   总被引:13,自引:0,他引:13  
A field experiment was conducted to measure the flux and speed of wind-blown sand under known conditions in a natural setting. The experiment, run at Pismo Beach, California, involved a tract 100 m long (parallel with the wind) by 20 m wide. The site was instrumented with four arrays of anemometers to obtain wind velocity profiles through the lower atmospheric boundary-layer, temperature probes to determine atmospheric stability and wind vanes to determine wind direction. From these measurements, wind friction speeds were derived for each experimental run. In order to measure sand saltation flux, a trench 3 m long by 10 m wide (transverse to the wind direction) by 0·5 m deep was placed at the downwind end of the tract and lined with 168 collector bins, forming an ‘egg-box’ pattern. The mass of particles collected in each bin was determined for four experimental runs. In order to assess various sand-trap systems used in previous experiments, 12 Leatherman traps, one Fryberger trap and one array of Ames traps were deployed to collect particles concurrently with the trench collection. Particle velocities were determined from analysis of high-speed (3000 and 5000 frames per second) motion pictures and from a particle velocimeter. Sand samples were collected from the trench bins and the various sand traps and grain size distributions were determined. Fluxes for each run were calculated using various previously published expressions, and then compared with the flux derived from the trench collection. Results show that Bagnold's (1941) model and White's (1979) equation most closely agree with values derived from the trench. Comparison of the various collector systems shows that the Leatherman and Ames traps most closely agree with the flux derived from the trench, although these systems tended to under-collect particles. Particle speeds were measured from analysis of motion pictures for saltating particles in ascending and descending parts of their trajectories. Results show that particle velocities from the velocimeter are in the range 0·5–7·0 m s?1, compared to a wind friction velocity of 0·32–0·43 m s?1 and a wind velocity of 2·7–3·9 m s?1 at the height of the particle measurements. Descending particles tended to exceed the speeds of ascending particles by ~ 0·5 m s?1.  相似文献   

20.
ABSTRACT
Bedforms of the Surtainville area, off the Cherbourg peninsula, include subtidal sandwaves, which are a good example of mega-structures associated with the strong tidal currents prevailing in the English Channel. A fine-scale study using a high-accuracy echo-sounder and side-scan sonar shows that some of these sandwaves have a crescentic shape and a strong asymmetry indicating a sand movement toward the north. The sandwaves range in height from about 3.5 m to 7.5 m, in width from 100 m to 500 m and in length from 70 m to 200 m; their internal structure, revealed by the simultaneous use of a high-resolution seismic source, is characterized by large 'foreset' beds dipping in the same direction as the lee sides of the sandwaves. Groups of foresets are limited by reactivation surfaces which we interpret as erosional surfaces created by subordinate tides. The presence of horizontal erosional reflectors inside the sandwaves and the truncation of the present-day profiles may reflect the effects of storms. The asymmetry of the tide in the area studied, shown by long-term current measurements, indicates that these sandwaves belong to classes III or IV of Allen's (1980a) classification; the observed structures correspond very well to the prediction of Allen's conceptual model, but we suggest that long term phenomena like equinox cyclicity, associated with storms, may be responsible for their origin rather than the neap-spring-neap tidal cycles responsible for the internal structure of intertidal bedforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号