首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier paper the evolution of a magnetic field was considered which permeates an electrically conducting fluid and its non-conducting surroundings. It was shown how the tensorial Green's function of the initial value problem posed by the governing equations can be constructed. The present paper gives a more detailed analysis of the case where the fluid occupies the interior of a sphere. The construction is carried out for arbitrary motions of the fluid. More special results are derived for differential rotation with angular velocity depending only on the radius, and explicit expressions of Green's functions are given for rigid body rotation.  相似文献   

2.
The evolution of a magnetic field is considered which pervades an electrically conducting fluid and its non-conducting surroundings under the influence of electromotive forces due to internal motion and other causes. The governing equations -- among which the induction equation of magnetohydrodynamics is the most prominent -- pose an initial value problem for the magnetic flux density. Properties of this initial value problem and of the solving Green's function are reviewed and a general construction principle for the Green's function is given. Detailed treatment of cases where the fluid occupies a sphere or an evenly bounded half-space are presented in two subsequent papers  相似文献   

3.
First, in connection with their construction due to HADAMARD, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to EINSTEIN: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadámard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time.  相似文献   

4.
In this paper it is confirmed once more that there exists the general solution of Laplace's equation in ellipsoidal coordinates which satisfies the Stäckel theorem and which was derived earlier by M. Jarov-Jarovoi and S. J. Madden. The author interprets physically the general solution in real space as potentials of layers of charge and double layers in which the distribution of densities is defined by Green's formula.  相似文献   

5.
6.
According to the principle of correspondence (in HEISENBERG 's formulation) each general relativistic theory of gravitation must give a NEWTON ian representation for an isotropic cosmos with the ROBERTSON -WALKER metric. Indeed, the FRIEDMANN equations can be interpreted as the expression for the HAMILTON ian H of a closed NEWTON ian system of the cosmic fundamental particles, written in the rest-system of the center of gravity. In this HAMILTON ian H only the relative-coordinates and the relative-velocities of the particles are present and one can write H without absolute quantities but only with MILNE 's relative-quantities. The time-independence of the HAMILTON ian H = 0 is the FRIEDMANN equation. – This NEWTON ian deduction of the FRIEDMANN equation is more general than the relativistic deduction and than MILNE 's deduction for a NEWTON ian fluid, too. In the general NEWTON ian form H the parameter f M of the active mass can be an arbitrary function of the cosmic time t. The choice f = f(t), M = M(t) defines the divers modifications of relativistic cosmology. – In general relativity fM = const and M = const are resulting from EINSTEIN 's equations and from EINSTEIN 's principle of equivalence.  相似文献   

7.
According to the equivalence between the FRIEDMANN equation of relativistic cosmology and the condition for the time-independence H = o of the HAMILTON ian H of an isotropic particle-system in the NEWTON ian mechanics (which equivalence is proved in the part I of our paper) we construct the corresponding classical HAMILTON ians to the relativistic world-models. Each cosmological model which is resulting from a physically meaningful gravitation theory must give a FRIEDMANN equation as the cosmological formulation of the time-independence condition of the energy H for the corresponding NEWTON ian N-particle system. In general relativity, EINSTEIN's field equations are including EINSTEIN's strong principle of equivalence and are giving the constance f = o and M = o of the gravitation-number f and of the mass M of the universe additional to FRIEDMANN's equation. – In special relativity, we have fM = o and this MILNE -universe is possessing a NEWTON ian and a general relativistic interpretation, too. – However, if the postulate together with the “cosmological principle” other principles about the world structure, too (p. e. MACH'S or DIRAC'S principle or the “perfect cosmological principle” by the steady-state cosmology), then EINSTEIN'S weak principle of equivalence can be fulfilled, only. In these world models the gravity-mass fM becomes a function of the cosmic time t [d/dt(fM) ± o] and this variability of fM is compatible with the constance H = o of the energy H of the NEWTON ian particle-system. For flat three-dimensional cosmological spaces (with H = Ḣ = o) a creation of rest-mass (M > o) is possible. This creation is the pecularity of the steady-state cosmos (with M > o, f = o) and of JORDAN'S cosmos (with M > o, f < o). The MACH -EINSTEIN -doctrine about the perfect determination of the inertia and of the space-time-metric by the cosmic gravitation is founded on the substitution of the NEWTON ian HAMILTON ian by a GAUSS -RIEMANN ian gravitation potential U*(rAB' vAB) (TREDER 1972). Therefore, the FRIEDMANN equation for a universe with MACH'S principle is resulting from the analytical expression of the time-independence of this RIEMANNian potential U* = 0. In the case of such MACH-EINSTEIN's-Universes EINSTEIN'S condition 3fM = c8r between the mass A4 and the radius Y of the universe is valid additional to FRIEDMANN'S equation. For these universes, the EINSTEIN condition determinates the instantaneous value of the gravitation-number f. - The explicite form of the conditions H = o or h' = o gives the equation of motion for the cosmic fundamental particles with attraction and repulsion forces, generally.  相似文献   

8.
Identical equations of motion are shown to emerge for a system ofn+1 rigid bodies all interconnected byn points, each of which is common to two bodies, by means of each of the following derivation procedures, all of which employ a kinematical identity developed by Hooker and Margulies: The Hooker-Margulies/Hooker equations; Kane's quasicoordinate formulation of D'Alembert's principle; the combination of Lagrange's generalized coordinate equations and Lagrange's quasicoordinate equations; and the combination of Lagrange's generalized coordinate equations and the vector rotational equationM=H applied to the total system and resolved into a vector basis fixed in a reference body of the system. Thus the previously published Hooker-Margulies/Hooker equations are shown to be the natural result of several derivation procedures other than the Newton-Euler method originally used, provided that the central kinematical identity of the original derivation of Hooker and Margulies is employed.  相似文献   

9.
Linear FREDHOLM integral equations are derived for the STOKES vector of the radiation emerging from a scattering plane parallel medium of finite optical thickness. The integral equations are obtained by means of imbedding the slab in an infinite medium. They are formulated in terms of GREEN 's function matrices and renormalized for the asymptotic eigenmode. Explicitly, linear integral equations are given for the reflection and transmission matrices. The reciprocity principle is employed to obtain integral equations also for the mean intensity of the inner radiation field in the case of the slab albedo problem.  相似文献   

10.
It is shown in this paper that it is possible to relativize the rotative motion of a rigid body in such a manner that, without any other than apparent kinematic superluminal velocities, an explanation can be given of the origin of the centrifugal, Coriolis and Euler forces, which is completely consistent with Mach's principle.  相似文献   

11.
12.
A rotaing rigid body with elipsoidal cavity filled with magnetic fluid is considered as a pulsar model. Dynamical equations for the pulsar model are derived and investigated, certain integrable cases are indicated. Three–parameter sets of periodic solution integrable in terms of elliptic functions of the time variable are obtained. A formula is derived for the period of rotation and magneto–rotational oscillations of the pulsar.  相似文献   

13.
Homogeneous and Isotropic cosmological models of low-energy, string gravitation with loop corrections to the dilaton coupling functions are investigated by methods of the qualitative theory of dynamical systems. An ideal fluid with a barotropic equation of state is considered as the nongravitational source. In the general case of curved models, the cosmological equations are represented in the form of a third-order, autonomous, dynamical system. Phase portraits for different coupling functions are constructed for flat models. The asymptotic behavior of the general solution in limiting regions is investigated. The stabilization of the dilaton is analyzed using the Damour-Polyakov mechanism. Translated from Astrofizika, Vol. 42, No. 1, pp. 117–136, January–March, 1999.  相似文献   

14.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The Einstein field equations for a perfect fluid with two commuting Killing vectors, which span the fluid's four-velocity, are considered. A third space time symmetry, which is a homothetic or a Killing vector, can be used to reduce these equations to a system of ordinary differential equations. This symmetry restricts the form of the differential rotation Ω of the fluid. A Bianchi classification of the resulting Lie algebras is performed and related to the kinematical properties of the fluid.  相似文献   

16.
田谐项摄动是分析法轨道预报中的重要部分,其中包含大量倾角函数及其偏导数的计算.由于具有精度更高、速度更快的优点,倾角函数一般通过递推方法计算.以文献中提出的改进Gooding方法为基础,将其给出的程序稍加改进,在计算2–50阶倾角函数时缩短了约24%的计算时间.考虑到分析法预报过程中轨道平倾角变化很小,以泰勒展开式计算倾角函数,可极大提高计算速度,较大程度地减小分析法预报耗时,且引力场阶次越高,减小幅度越大,取50阶时预报耗时缩短了48%.另一方面,以2阶展开式计算倾角函数时,与改进Gooding法相比,分析法预报星历偏差很小.对于500 km高度的低轨卫星,分别以改进Gooding法和2阶泰勒展开式计算倾角函数,预报3天,当地球引力场阶次不高于50时,二者预报星历偏差RMS (Root Mean Square)低于1 mm,且随着轨道高度的增加,预报星历偏差RMS逐渐减小.  相似文献   

17.
We report the discovery of a partially altered microchondrule within a fine‐grained micrometeorite. This object is circular, <10 μm in diameter, and has a cryptocrystalline texture, internal zonation, and a thin S‐bearing rim. These features imply a period of post‐accretion parent body aqueous alteration, in which the former glassy igneous texture was subject to hydration and phyllosilicate formation as well as leaching of fluid‐mobile elements. We compare this microchondrule to three microchondrules found in two CM chondrites: Elephant Moraine (EET) 96029 and Murchison. In all instances, their formation appears closely linked to the late stages of chondrule formation, chondrule recycling, and fine‐grained rim accretion. Likewise, they share cryptocrystalline textures and evidence of mild aqueous alteration and thus similar histories. We also investigate the host micrometeorite's petrology, which includes an unusually Cr‐rich mineralogy, containing both Mn‐chromite spinel and low‐Fe‐Cr‐rich (LICE) anhydrous silicates. Because these two refractory phases cannot form together in a single geochemical reservoir under equilibrium condensation, this micrometeorite's accretionary history requires a complex timeline with formation via nonequilibrium batch crystallization or accumulation of materials from large radial distances. In contrast, the bulk composition of this micrometeorite and its internal textures are consistent with a hydrated carbonaceous chondrite source. This micrometeorite is interpreted as a fragment of fine‐grained rim material that once surrounded a larger parent chondrule and was derived from a primitive carbonaceous parent body; either a CM chondrite or Jupiter family comet.  相似文献   

18.
Equations of motion of a heavy rigid body about a fixed point in the Kowalevskaya's case are reduced to those of the plane motion of a particle under the action of potential force. In the new form of equations of motion, elliptic coordinates λ, μ are used, and motion has taken the Hamilton-Jacobi form.  相似文献   

19.
Analysis of the NWA 2086 CV3 chondrite showed a matrix/chondrule ratio of 52%, similar to Bali, Mokoia, and Grosanaja. Nearly twice as many chondrule fragments as intact ones demonstrate that an early fragmentation phase occurred prior to final accretion. After this event, no substantial mechanical change or redeposition is evident. Rims with double‐layered structures were identified around some chondrules, which, in at least one case, is attributed to an accretionary origin. The rim's outer parts with a diffuse appearance were formed by in situ chemical alteration. During this later process, Mg content decreased, Fe content increased, and olivine composition was homogenized, producing a rim composition close to that of the matrix. This alteration occasionally happened along fractures and at confined locations, and was probably produced by fluid interactions. Iron oxides are the best candidate for a small grain‐sized alteration product; however, technical limitations in the available equipment did not allow exact phase identification. These results suggest that NWA 2086 came from a location (possible more deeply buried) in the CV parent body than Mokoia or Bali, and suffered less impact effects—although there is no evidence of sustained thermal alteration. This meteorite may represent a sample of the CV parent asteroid interior and provide a useful basis for comparison with other CV meteorites in the future.  相似文献   

20.
In this article a method is described for the determination of families of periodic orbits, of the restricted problem of three bodies, as branchings of a given family of stable periodic orbits. Poincaré's method of successive crossings of a surface of section is applied for a value of the mass parameter corresponding to the Sun-Jupiter case of the restricted problem. New families are found, of the type of direct asteroids, having long periods and closing in space after many revolutions of the third body about the Sun. Their stability parameters are also given. The generating family, from which they branch, seems to have special significance for stability considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号