首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
As an important part of agricultural drought risk, agricultural drought vulnerability helps effectively prevent and alleviate drought impacts by quantifying the vulnerability as well as identifying its spatial distribution characteristics. In this study, global agricultural cultivation regions were chosen as the study area; six main crops(wheat, maize, rice, barley, soybean,sorghum) were selected as the hazard-affected body of agricultural drought. Then, global vulnerability to agricultural drought was assessed at a 0.5° resolution and finally, its distribution characteristics were revealed. The results indicated that the area percentages of different grades of global vulnerability to agricultural drought from low to very high were 38.96%, 28.41%,25.37%, and 7.26%, respectively. This means that the total area percentage of high and very high vulnerability zones exceeded30% of the study area. Although high and very high vulnerability zones were mainly distributed in arid and semi-arid regions,approximately 40% of those above were distributed in humid and semi-humid regions. In addition, only about 15% of the population in this study was located in the high vulnerability regions. Among the vulnerability factors, water deficit during the growing season and the irrigation area ratio are the key factors affecting regional vulnerability. Therefore, the vulnerability could be reduced by adjusting crop planting dates and structures as well as by improving irrigation level and capacity.  相似文献   

4.
Global plasmaspheric TEC and its relative contribution to GPS TEC   总被引:3,自引:0,他引:3  
The plasmaspheric electron content is directly estimated from the global positioning system (GPS) data onboard JASON-1 Satellite for the first time. Similarly, the ground-based GPS total electron content (TEC) is estimated using about 1000 GPS receivers distributed around the globe. The relative contribution of the plasmaspheric electron content to the ground-based GPS TEC is then estimated globally using these two independent simultaneous measurements; namely ground-based GPS TEC and JASON-1 GPS TEC. Results presented here include data from 3 months of different solar cycle conditions (October 2003, May 2005, and December 2006). The global comparison between the two independent measurements was performed by dividing the data into three different regions; equatorial, mid- and high-latitude regions. This division is essential as the GPS raypaths traverse different distances through the plasmasphere at different latitudes. The raypath length through the plasmasphere decreases as latitude increases. The relative contribution of the plasmaspheric electron content exhibits a diurnal variation that depends on latitude with minimum contribution (10%) during daytime and maximum (up to 60%) at night. The contribution is also maximum at the equatorial region where the GPS raypath traverses a long distance through the plasmasphere compared to its length in mid- and high-latitude regions. Finally, the solar cycle variation of plasmaspheric contribution is also reported globally.  相似文献   

5.
Global Terrestrial Water Storage Changes and Connections to ENSO Events   总被引:1,自引:0,他引:1  
Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to ~0.70, well above the 95% significance level (~0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle–high latitudes shows the large-scale impact of ENSO on the global water cycle.  相似文献   

6.
肖洁  李力 《湖泊科学》2003,15(Z1):83-89
本文通过长沙近百年和湖南区域近百站40a来的气象资料统计,分析了在全球气候变暖条件下湖南气候变化事实,揭示了湖南洪水灾害加剧的情况,并提出了应加以重视的问题.  相似文献   

7.
Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth’s climate system, the El Niño–Southern Oscillation (ENSO) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the ENSO influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of ENSO may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where ENSO modulates a climate system characterised by a seasonal reversal of the wind forcing, such as the monsoon system in the Indian Ocean, phenology-based mean anomalies of physical variables help refine evaluation of the mechanisms driving the biological responses and provide a more comprehensive understanding of the integrated processes.  相似文献   

8.
9.
This paper revisits several aspects of defining and computing the anomalous gravity data for purposes of gravimetric inversion/interpretation. Attention is paid to evaluation of a refined global topographic correction to the gravity disturbance based on the reference ellipsoid (RE) and constant reference density for solid topography onshore and sea water density for liquid topography offshore. The global bathymetric correction is discussed. Two issues associated with compilation and inversion of bathymetrically and topographically corrected gravity disturbances in regions of negative ellipsoidal (geodetic) heights are pointed out: the evaluation of normal gravity and the harmonic continuation of the gravity data. Stripping, the removal of an effect of a known density contrast, is considered also for additional geological elements such as lakes, glaciers, sedimentary basins, isostatic mountain roots, etc. The stripping corrections are discussed in the context of the gravimetric inverse problem.  相似文献   

10.
11.
12.
Empirical Global Relations Converting M S and m b to Moment Magnitude   总被引:1,自引:0,他引:1  
The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, M W. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against M W are the surface wave magnitude, M S, the body wave magnitude, m b, and the local magnitude, M L. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976–31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between M W and m b and M S and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.  相似文献   

13.
A digitised tectonic model, initially built up for regionalization of Rayleigh waves, is applied to the geoid in order to define the mean geoid heights of the following regions: 3 oceanic regions, namely young oceans (0–30 Ma) middle-aged oceans (30–80 Ma) and old oceans (> 80 Ma); trenches and subduction zones; mountains; and shields. The relative importance of the deep sources is damped or enhanced by progressively removing or adding the lower or higher degrees of the geoid. A statistical approach allows us to quantify the success of the correlation between tectonics and these filtered geoids.Significant variations are observed in these correlations for oceanic regions (including subduction zones) with a cut-off between degree-2 and higher degrees. For degrees ? 3, a well-known trend is observed: high values correspond to young oceans (ridges) and low values to old oceans, high values are also obtained for subduction zones. On the contrary, and unexpectedly, for the degree-2 alone a trend reversal is observed: geoid lows are observed over ridges and geoid highs over old oceans; trenches give the same geoid amplitude than old oceans. Clearly this denotes a degree-2 convection pattern connected to plate tectonics. In addition it is shown that the minimum and maximum inertia axes of the surface distribution of young oceans, and independently of old oceans and trenches, coincide with the Earth's equatorial inertia axes (74°E and 164°E), i.e., with the equatorial extremes of the degree-2 geoid.Plate tectonics is uncorrelated with the polar anomaly of the degree-2 geoid, namely the flattening which is not accounted for by Earth rotation. A north-south axisymmetric convection with a degree-2 pattern is proposed to explain this extra flattening; this model is supported by the latitude dependence of the depth of oceanic ridges.  相似文献   

14.
15.
2013年2月,美国《地震杂志》(Earthquake Spectra)在线发表题为《全球地震死亡人数和人口数量》(Global Earthquake Fatali-ties and Population)的文章,预测出21世纪内单次死亡人口多的地震数量将会增加,而且因地震死亡的人数将会超过以往任何时候。美国地质调查局(USGS)的科研人员将现代全球地震死亡人数分为2部分:不依赖于世界人口增长的、每年大致相同的死亡人数基线;单次死亡人口多的大地震所造成的死亡,其死亡率依赖于世界人口。研究中将  相似文献   

16.
0全球火山活动概况 2021年1-2月全球共有49座火山出现喷发活动,其中,警戒级别为Ⅰ级的火山13座,警戒级别为Ⅱ级的火山21座,警戒级别为Ⅲ级的火山14座,警戒级别为Ⅳ级的火山1座(表1).从空间分布上看,绝大多数活动火山位于环太平洋火山带上,少数分布在印度洋板块与欧亚板块碰撞带上,个别活动火山处于其他板块交界地带...  相似文献   

17.
叶希青  康建红  关升 《中国地震》2023,39(1):219-223
<正>0全球火山活动概况2022年10—12月全球共有67座火山出现活动,其中,警戒级别Ⅰ级的火山15座,警戒级别Ⅱ级的火山21座,警戒级别Ⅲ级的火山27座,警戒级别Ⅳ级的火山4座(表1)。从空间分布上看,绝大多数活动火山位于环太平洋火山带上,少数分布在地中海火山带西南段,个别活动火山处于板块交汇处和板块内部(图1);从分布国家来看,活动火山多集中在美国、俄罗斯、印度尼西亚、日本等国;“一带一路”沿线有7座火山出现活动,其中,印度尼西亚5座,意大利2座。2022年10—12月全球火山活动水平有所减弱,  相似文献   

18.
Glaciers have strongly contributed to sea-level rise during the past century and will continue to be an important part of the sea-level budget during the twenty-first century. Here, we review the progress in estimating global glacier mass change from in situ measurements of mass and length changes, remote sensing methods, and mass balance modeling driven by climate observations. For the period before the onset of satellite observations, different strategies to overcome the uncertainty associated with monitoring only a small sample of the world’s glaciers have been developed. These methods now yield estimates generally reconcilable with each other within their respective uncertainty margins. Whereas this is also the case for the recent decades, the greatly increased number of estimates obtained from remote sensing reveals that gravimetry-based methods typically arrive at lower mass loss estimates than the other methods. We suggest that strategies for better interconnecting the different methods are needed to ensure progress and to increase the temporal and spatial detail of reliable glacier mass change estimates.  相似文献   

19.
关升  康建红  贾若  顾国辉 《中国地震》2021,37(3):745-748
正1)吉林省地震局,长春1301172)中国地震局火山研究所,长春130117  相似文献   

20.
关升  顾国辉 《中国地震》2023,39(4):922-926
<正>0全球火山活动概况2023年7—9月全球共有63座火山出现活动,其中,警戒级别Ⅰ级的火山15座,警戒级别Ⅱ级的火山23座,警戒级别Ⅲ级的火山25座,无警戒级别Ⅳ级的火山(表1)。从空间分布上看,绝大多数活动火山位于环太平洋火山链上,少数分布在印度洋板块与欧亚板块碰撞带上,个别活动火山处于其他板块交界地带、板块内部(图1)。从国家分布来看,活动火山多集中在美国、印度尼西亚、日本等国,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号