首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
气候变化的归因与预估模拟研究   总被引:14,自引:2,他引:12  
本文总结了近五年来中国科学院大气物理研究所在气候变暖的归因模拟与预估研究上的主要进展。研究表明,利用海温、太阳辐射和温室气体等实际强迫因子驱动大气环流模式,能够较为合理地模拟全球平均地表气温在20世纪的演变,但是难以模拟出包括北大西洋涛动/北极涛动和南极涛动在内的高纬度环流的长期变化趋势。利用温室气体和硫酸盐气溶胶等“历史资料”驱动气候系统模式,能够较好地模拟出20世纪后期的全球增暖,但如果要再现20世纪前期(1940年代)的变暖,还需同时考虑太阳辐射等自然外强迫因子。20世纪中国气温演变的耦合模式模拟技巧,较之全球平均情况要低;中国气候在1920年代的变暖机理目前尚不清楚。对于近50年中国东部地区“南冷北暖”、“南涝北旱”的气候变化,基于大气环流模式特别是区域气候模式的数值试验表明,夏季硫酸盐气溶胶的负辐射效应超过了温室气体的增暖效应,从而对变冷产生贡献。但现有的数值模拟证据,不足以说明气溶胶增加对“南涝北旱”型降水异常有贡献。20世纪中期以来,青藏高原主体存在明显增温趋势,温室气体浓度的增加对这种增暖有显著贡献。多模式集合预估的未来气候变化表明,21世纪全球平均温度将继续增暖,增温幅度因不同排放情景而异;中国大陆年均表面气温的增暖与全球同步,但增幅在东北、西部和华中地区较大,冬季升温幅度高于夏季、日最低温度升幅要强于日最高温度;全球增暖有可能对我国中东部植被的地理分布产生影响。伴随温室气体增加所导致的夏季平均温度升高,极端温度事件增多;在更暖的气候背景下,中国大部分地区总降水将增多,极端降水强度加大且更频繁发生,极端降水占总降水的比例也将增大。全球增暖有可能令大洋热盐环流减弱,但是减弱的幅度因模式而异。全球增暖可能不是导致北太平洋副热带-热带经圈环流自20世纪70年代以来变弱的原因。文章同时指出了模式预估结果中存在的不确定性。  相似文献   

2.
This paper examines in detail the statement in the 2007 IPCC Fourth Assessment Report that “Most of the observed increase in global average temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations”. We use a quantitative probabilistic analysis to evaluate this IPCC statement, and discuss the value of the statement in the policy context. For forcing by greenhouse gases (GHGs) only, we show that there is a greater than 90 % probability that the expected warming over 1950–2005 is larger than the total amount (not just “most”) of the observed warming. This is because, following current best estimates, negative aerosol forcing has substantially offset the GHG-induced warming. We also consider the expected warming from all anthropogenic forcings using the same probabilistic framework. This requires a re-assessment of the range of possible values for aerosol forcing. We provide evidence that the IPCC estimate for the upper bound of indirect aerosol forcing is almost certainly too high. Our results show that the expected warming due to all human influences since 1950 (including aerosol effects) is very similar to the observed warming. Including the effects of natural external forcing factors has a relatively small impact on our 1950–2005 results, but improves the correspondence between model and observations over 1900–2005. Over the longer period, however, externally forced changes are insufficient to explain the early twentieth century warming. We suggest that changes in the formation rate of North Atlantic Deep Water may have been a significant contributing factor.  相似文献   

3.
We present a study that suggests greening in the circumpolar high-latitude regions amplifies surface warming in the growing season (May–September) under enhanced greenhouse conditions. The investigation used a series of climate simulations with the Community Atmospheric Model version 3—which incorporates a coupled, dynamic global vegetation model—with and without vegetation feedback, under both present and doubled CO2 concentrations. Results indicate that climate warming and associated changes promote circumpolar greening with northward expansion and enhanced greenness of both the Arctic tundra and boreal forest regions. This leads to additional surface warming in the high-latitudes in the growing season, primarily through more absorption of incoming solar radiation. The resulting surface and tropospheric warming in the high-latitude and Arctic regions weakens prevailing tropospheric westerlies over 45–70N, leading to the formation of anticyclonic pressure anomalies in the Arctic regions. These pressure anomalies resemble the anomalous circulation pattern during the negative phase of winter Arctic Oscillation. It is suggested that these circulation anomalies reinforce the high-latitude and Arctic warming in the growing season.  相似文献   

4.
The fourth version of the atmosphere-ocean general circulation (AOGCM) model developed at the Institut Pierre-Simon Laplace (IPSL-CM4) is used to investigate the mechanisms influencing the Arctic freshwater balance in response to anthropogenic greenhouse gas forcing. The freshwater influence on the interannual variability of deep winter oceanic convection in the Nordic Seas is also studied on the basis of correlation and regression analyses of detrended variables. The model shows that the Fram Strait outflow, which is an important source of freshwater for the northern North Atlantic, experiences a rapid and strong transition from a weak state toward a relatively strong state during 1990–2010. The authors propose that this climate shift is triggered by the retreat of sea ice in the Barents Sea during the late twentieth century. This sea ice reduction initiates a positive feedback in the atmosphere-sea ice-ocean system that alters both the atmospheric and oceanic circulations in the Greenland-Iceland-Norwegian (GIN)-Barents Seas sector. Around year 2080, the model predicts a second transition threshold beyond which the Fram Strait outflow is restored toward its original weak value. The long-term freshening of the GIN Seas is invoked to explain this rapid transition. It is further found that the mechanism of interannual changes in deep mixing differ fundamentally between the twentieth and twenty-first centuries. This difference is caused by the dominant influence of freshwater over the twenty-first century. In the GIN Seas, the interannual changes in the liquid freshwater export out of the Arctic Ocean through Fram Strait combined with the interannual changes in the liquid freshwater import from the North Atlantic are shown to have a major influence in driving the interannual variability of the deep convection during the twenty-first century. South of Iceland, the other region of deep water renewal in the model, changes in freshwater import from the North Atlantic constitute the dominant forcing of deep convection on interannual time scales over the twenty-first century.  相似文献   

5.
Progress in the attribution of climate warming in China for the 20th century is summarized. Three sets of climate model experiments including both coupled and uncoupled runs have been used in the attribution analyses. Comparison of climate model results with the observations proves that in the 20th century, especially in the recent half century, climate warming in China is closely related to the increasing of the anthropogenic emissions of greenhouse gases, while sulfate aerosol should also have contributions. When both external forcing and natural forcing agents are prescribed, coupled climate models have better results in producing the observed variation of temperature in China. The role of oceanic forcing is also emphasized in the attribution analyses. The observed climate warming of China in the 1920s could not be reproduced in any set of climate model simulations.  相似文献   

6.
The equilibrium response of atmospheric circulation to the direct radiative effects of natural or anthropogenic aerosols is investigated using the Community Atmosphere Model (CAM3) coupled to two different ocean boundary conditions: prescribed climatological sea surface temperatures (SSTs) and a slab ocean model. Anthropogenic and natural aerosols significantly affect the circulation but in nearly opposite ways, because anthropogenic aerosols tend to have a net local warming effect and natural aerosols a net cooling. Aerosol forcings shift the Intertropical Convergence Zone and alter the strength of the Hadley circulation as found in previous studies, but also affect the Hadley cell width. These effects are due to meridional gradients in warming caused by heterogeneous net heating, and are stronger with interactive SST. Aerosols also drive model responses at high latitudes, including polar near-surface warming by anthropogenic aerosols in summer and an Arctic Oscillation (AO)-type responses in winter: anthropogenic aerosols strengthen wintertime zonal wind near 60°N, weaken it near 30°N, warm the troposphere, cool the stratosphere, and reduce Arctic surface pressure, while natural aerosols produce nearly opposite changes. These responses are shown to be due to modulation of stratospheric wave-driving consistent with meridional forcing gradients in midlatitudes. They are more pronounced when SST is fixed, apparently because the contrast in land-ocean heating drives a predominantly wavenumber-2 response in the northern hemisphere which is more efficient in reaching the stratosphere, showing that zonal heating variations also affect this particular response. The results suggest that recent shifts from reflecting to absorbing aerosol types probably contributed to the observed decadal variations in tropical width and AO, although studies with more realistic temporal variations in forcing would be needed to quantify this contribution.  相似文献   

7.
Using the coupled ocean-atmosphere Bergen Climate Model,and a Lagrangian vorticity-based cyclone tracking method,the authors investigate current climate summer cyclones in the Northern Hemisphere and their change by the end of the 21st century,with a focus on Northern Eurasia and the Arctic.The two scenarios A1B and A2 for increasing greenhouse gas concentrations are considered.In the model projections,the total number of cyclones in the Northern Hemisphere is reduced by about 3% 4%,but the Arctic Ocean and adjacent coastal re-gions harbour slightly more and slightly stronger summer storms,compared to the model current climate.This in-crease occurs in conjunction with an increase in the high-latitude zonal winds and in the meridional tempera-ture gradient between the warming land and the ocean across Northern Eurasia.Deficiencies in climate model representations of the summer storm tracks at high lati-tudes are also outlined,and the need for further model inter-comparison studies is emphasized.  相似文献   

8.
The Arctic Amplification Debate   总被引:16,自引:0,他引:16  
Rises in surface air temperature (SAT) in response to increasing concentrations of greenhouse gases (GHGs) are expected to be amplified in northern high latitudes, with warming most pronounced over the Arctic Ocean owing to the loss of sea ice. Observations document recent warming, but an enhanced Arctic Ocean signal is not readily evident. This disparity, combined with varying model projections of SAT change, and large variability in observed SAT over the 20th century, may lead one to question the concept of Arctic amplification. Disparity is greatly reduced, however, if one compares observed trajectories to near-future simulations (2010–2029), rather than to the doubled-CO2 or late 21st century conditions that are typically cited. These near-future simulations document a preconditioning phase of Arctic amplification, characterized by the initial retreat and thinning of sea ice, with imprints of low-frequency variability. Observations show these same basic features, but with SATs over the Arctic Ocean still largely constrained by the insulating effects of the ice cover and thermal inertia of the upper ocean. Given the general consistency with model projections, we are likely near the threshold when absorption of solar radiation during summer limits ice growth the following autumn and winter, initiating a feedback leading to a substantial increase in Arctic Ocean SATs.  相似文献   

9.
北大西洋年代际振荡(AMO)气候影响的研究评述   总被引:6,自引:0,他引:6  
北大西洋年代际振荡(theAtlantic Multidecadal Oscillation,AMO)是发生在北大西洋区域空间上具有海盆尺度、时间上具有多十年尺度的海表温度(sea surface temperature,SST)准周期性暖冷异常变化。它具有65~80a周期,振幅为0.4℃。AMO的形成与热盐环流的准周期性振荡有关,它是气候系统的一种自然变率。诸多研究表明,AMO在北大西洋局地气候及全球其他区域气候演变中发挥了重要影响。欧亚大陆的表面气温,美国大陆、巴西东北部、西非以及南亚的降水,北大西洋飓风等都与之密切相关。AMO对东亚季风气候的年代际变化有显著的调制作用,暖位相AMO增强东亚夏季风,减弱冬季风,冷位相则相反。本文总结了这方面的研究进展,讨论了AMO对未来气候预测的意义,认为最近20多年来我国冬季的显著增暖与AMO处于暖位相有关,是人类温室气体强迫与暖位相AMO(自然因子)两种增暖影响相叠加的结果。随着AMO逐渐转入冷位相,我国冬季变暖趋势将放慢,并有望于21世纪20年代中期逆转。  相似文献   

10.
H. Paeth  A. Hense 《Climate Dynamics》2001,18(3-4):345-358
 The lower tropospheric mean temperature 500/1000 hPa is examined in the Northern Hemisphere high-latitude region north of 55°N with regard to a climate change signal due to anthropogenic climate forcing as a supplement to previous studies which concentrated on near surface temperatures. An observational data set of the German Weather Service is compared with several model simulations including different scenarios of greenhouse gas and sulfate aerosol forcing derived from the two recent versions of the coupled climate model in Hamburg, ECHAM-3/LSG and ECHAM-4/OPYC. The signal analysis is based on the optimal fingerprint method, which supplies a detection variable with optimal signal-to-noise ratio. The natural variability measures are derived from the corresponding long-term control experiments. From 1970 onward, we find high trend pattern analogies between the observational data and the greenhouse-gas induced model simulations. The fingerprint of this common temperature signal consists of a predominate warming with maximum over Siberia and a weak cooling over the North Atlantic reaching an estimated significance level of about 1%. A non-optimized approach has also been examined, leading to even closer trend pattern correlations. The additional forcing by sulfate aerosols decreases the correlation of this climate change simulation with the observations. The natural variability constitutes about 50% of the conforming trend patterns. The signal-to-noise ratio is best over the oceans while the tropospheric temperatures over the land masses are contaminated by strong noise. The trend pattern correlations look the same for both model versions and several ensemble members with different noise realizations. Received: 4 January 1999 / Accepted: 11 April 2001  相似文献   

11.
We examine the simulated future change of the North Atlantic winter climate influenced by anthropogenic greenhouses gases and sulfate aerosol. Two simulations performed with the climate model ECHAM4/OPYC3 are investigated: a simulation forced by greenhouse gases and a simulation forced by greenhouse gases and sulfate aerosol. Only the direct aerosol effect on the clear-sky radiative fluxes is considered. The sulfate aerosol has a significant impact on temperature, radiative quantities, precipitation and atmospheric dynamics. Generally, we find a similar, but weaker future climate response if sulfate aerosol is considered additionally. Due to the induced negative top-of-the-atmosphere radiative forcing, the future warming is attenuated. We find no significant future trends in North Atlantic Oscillation (NAO) index in both simulations. However, the aerosol seems to have a balancing effect on the occurence of extreme NAO events. The simulated correlation patterns of the NAO index with temperature and precipitation, respectively, agree well with observations up to the present. The extent of the regions influenced by the NAO tends to be reduced under strong greenhouse gas forcing. If sulfate is included and the warming is smaller, this tendency is reversed. Also, the future decrease in baroclinicity is smaller due to the aerosols’ cooling effect and the poleward shift in track density is partly offset. Our findings imply that in simulations where aerosol cooling is neglected, the magnitude of the future warming over the North Atlantic region is overestimated, and correlation patterns differ from those based on the future simulation including aerosols.  相似文献   

12.
Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.  相似文献   

13.
This paper analyzes trends of temperatures over Africa and seeks to quantify the most significant processes. Observations of air temperature reveal significant warming trends in the 925–600 hPa layer over tropical west Africa and the east Atlantic. This is related to the influence of desert dust and biomass burning emissions on the atmospheric energy budget. We calculate a net radiative absorption of ~??20 W m???2. The southern (northern) plume is rich in short-lived greenhouse gases (dust aerosols), and the atmospheric response, according to a simplified radiative transfer model, is a >3°C heating of the 2–4 km layer. The observed pattern of warming coincides with a mixture of dust, black carbon and short-lived greenhouse gases in space, time and height. Physical forcing provides a secondary source of regional warming, with sinking motions over the Sahel. The elevated warm layer stabilizes the lower atmosphere over and west of Africa, so drying trends may be anticipated.  相似文献   

14.
Studies dealing with impact of the Arctic warming and related sea ice decline on the Northern Hemisphere atmospheric circulation are considered. The causes of occurrence of extremely cold winters over the mid-latitude continents observed in the recent decades against the warming background are discussed. Several conceptions are outlined which explain potential reasons for occurrence of this phenomenon. The paper discusses impacts of the Arctic sea ice loss on the large-scale atmospheric circulation, oscillations of planetary waves. It also discusses issues related to sea ice changes in the Barents and Kara seas and their link to the frequency of extremely cold winters observed in Eurasia and North America, the contribution of internal atmospheric variability to the increasing frequency of cold weather, and the role of the Atlantic Multidecadal Oscillation in the Arctic sea ice reduction.  相似文献   

15.
对欧亚大陆冬季地表温度南北反相的时空分布特征及机理的分析结果表明,欧亚大陆冬季地表温度约以55°N为界存在南北反相变化特征。1961~2015年欧亚大陆冬季地表温度变化具有显著的年际和年代际变化特征;年代际尺度上,北半球行星波"冬三"分布型变化与欧亚大陆地表温度南北反相变化密切联系。冬季欧亚地表温度南北反相变化存在明显的季节内转变。滤除年代际信号和全球变暖趋势后,欧亚大陆冬季地表温度与秋季北极海冰面积之间存在显著相关;北极海冰面积减小是欧亚、尤其中亚地区冬季地表温度降低的主要外强迫因素之一;同期北大西洋"三极子"和欧亚大陆冬季地表温度南北反相变化在年际尺度上存在显著相关。  相似文献   

16.
20世纪两次全球增暖事件的比较   总被引:12,自引:1,他引:11  
20世纪20年代和70年代全球出现了两次突变增暖,本文分析比较了这两次全球增暖的起源地,空间分布特点,影响范围,以及北半球增温和降温最大地区的气温变化与其相对应的大气环流变化的联系等.发现,第一次全球增暖始于北半球新地岛西北、冰岛及以北的极地地区,主要增暖区在北大西洋、格陵兰岛、冰岛和北半球中、高纬大陆地区,主要增暖季节是夏季.第二次全球增暖最早可能始于南半球南印度洋海盆及南极大陆地区,增暖中心有明显向北半球方向移动的倾向并广泛影响到全球热带、副热带海洋,没有明显的区域和季节增暖差异;北半球第二次增暖比南半球约晚10年,主要增温区在东亚大陆和北美西部,主要增暖季节在冬季.分析还发现,20世纪北半球增暖最强的东亚大陆、北美西北部和降温显著的冰岛、格陵兰岛、北大西洋以及中北太平洋等地的气温变化与其相应的大气环流系统的异常变化关系密切.  相似文献   

17.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

18.
2019年4~6月云南省发生了历史罕见的持续性极端高温天气,并引发了严重气象干旱。本文利用1961~2019年逐日温度和大气再分析等资料以及CESM-LE计划(Community Earth System Model Large Ensemble Project)模式模拟结果,分析了历史同期云南极端高温天气发生的环流特征,探讨了2019年云南破纪录持续性高温的成因。历史极端高温日的合成分析表明,云南地区对流层上层显著异常反气旋伴随的强下沉异常和到达地表太阳辐射增加,是引发该区域极端高温天气的主要成因。该异常反气旋的形成主要源自北大西洋经东欧平原、西西伯利亚平原向东亚传播的高纬度罗斯贝波和经北非、黑海、伊朗高原向东亚传播的中纬度罗斯贝波之间的相互作用。2019年极端高温的强度和与之相应异常反气旋出现自1961年以来的最强。外强迫导致的增暖对2019年极端暖异常强度的贡献约为37.51%,同时对类似2019年以及更强极端暖事件发生概率的贡献为56.32%,内部变率对该事件也具有重要贡献。2019年4~6月北极涛动(Arctic Oscillation,AO)和ENSO事件分别处于历史极端负位相和暖位相。一方面,在AO强负位相影响下,极地上空深厚的位势高度正异常向南伸至东欧平原,有利于高纬度波列和云南上空的反气旋异常增强。另一方面,ENSO事件暖位相加强了西北太平洋异常反气旋环流,令西北太平洋副热带高压增强西伸至我国内陆地区,维持了云南上空反气旋异常。两者的共同作用,造成了2019年4~6月云南上空持续的深厚异常反气旋,云南地区继而出现持续性极端高温事件。  相似文献   

19.
Patterns of decadal-scale Arctic warming events in simulated climate   总被引:1,自引:1,他引:0  
Pronounced positive decadal-scale temperature anomalies occurred in the Arctic region in the first half of the twentieth century, an episode known as the early twentieth century warming (ETCW). Analyzing a 3,000-year unperturbed climate simulation performed with the Max Planck Institute Earth System Model, we demonstrate that internal variability of the Northern Hemisphere climate system is sufficient to reproduce warm events matching the observed ETCW. We perform a superposed epoch analysis on simulated data and identify 26 Arctic warming episodes compatible with the ETCW. The simulated events reproduce, in their ensemble average, magnitude as well as spatial and temporal extent of the observed ETCW. In individual realizations, the ETCW-like events indicate that different patterns of internally generated decadal Arctic warming are possible, including pan-Arctic warming events. We investigate the dynamics that typically lead to the simulated warming events: positive oceanic heat transport anomalies that form in the North Atlantic initialize the warming events and trigger an ocean-ice-albedo feedback in the Barents Sea region. The consequent reduction in sea-ice extent leads to enhanced multi-year surface warming through strengthened ocean heat release to the atmosphere. The oceanic heat transport anomalies reduce to pre-event levels around the year of the maximum warming. However, the warming events typically lasts for another 5–7 years until the sea-ice extent recovers to pre-event conditions.  相似文献   

20.
The Arctic’s rapidly shrinking sea ice cover: a research synthesis   总被引:21,自引:1,他引:20  
The sequence of extreme September sea ice extent minima over the past decade suggests acceleration in the response of the Arctic sea ice cover to external forcing, hastening the ongoing transition towards a seasonally open Arctic Ocean. This reflects several mutually supporting processes. Because of the extensive open water in recent Septembers, ice cover in the following spring is increasingly dominated by thin, first-year ice (ice formed during the previous autumn and winter) that is vulnerable to melting out in summer. Thinner ice in spring in turn fosters a stronger summer ice-albedo feedback through earlier formation of open water areas. A thin ice cover is also more vulnerable to strong summer retreat under anomalous atmospheric forcing. Finally, general warming of the Arctic has reduced the likelihood of cold years that could bring about temporary recovery of the ice cover. Events leading to the September ice extent minima of recent years exemplify these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号