首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了探究高级氧化技术对土壤中有机氯代烃的氧化降解作用,为ISCO(in situ chemical oxidation)技术体系提供重要的理论依据和数据支撑,考察了热活化过硫酸盐(persulfate,PS)氧化降解不同类型土壤(砂类土壤、黏土类土壤)中挥发性氯代烃污染物(三氯乙烯(TCE)、三氯乙烷(TCA)、顺式-1,2-二氯乙烯(cis-1,2-DCE)、1,2-二氯乙烷(1,2-DCA))的效能;同时,通过硫酸盐与土壤相互作用过程研究,探究了不同土壤介质中有机质和无机组分在过硫酸盐消耗中所占比例。结果表明:在50℃时,热活化过硫酸盐可有效降解土壤中1,2-DCA、cis-1,2-DCE、TCA和TCE,砂类土壤介质中4种氯代烃降解效果依次为25%、89%、5%和61%,黏土类土壤介质中4种氯代烃降解效果依次为35%、86%、8%和63%;4种氯代烃的降解效果从高到低顺序依次为cis-1,2-DCE、TCE、1,2-DCA、TCA,砂类土壤中的氯代烃总体降解效果优于黏土类土壤中氯代烃的降解效果。另外,土壤中过硫酸盐氧化降解氯代烃反应研究发现,砂类和黏土类土壤介质组分中有机质消耗率分别为81.3%和72.6%,铁元素消耗率分别为80.5%和38.6%,表明土壤介质组分与过硫酸盐发生了氧化还原反应,从而导致过硫酸盐自身的大量消耗。由此可知,土壤介质中的有机质、铁元素等矿物质均参与过硫酸盐的消耗过程,且土壤有机质、铁元素与氯代烃之间在消耗过硫酸盐反应上存在竞争关系,土壤组分过多地消耗了过硫酸盐,导致了氯代烃的氧化降解效率较低。因此,针对实际有机氯代烃污染场地,采用过硫酸盐氧化技术进行修复时,过硫酸盐的实际投加量要远高于化学计量值,需充分考虑到土壤组分对过硫酸盐自身的消耗作用。  相似文献   

2.
The objectives of this study are to design an optimal electro-enhanced permeable reactive barrier (E2PRB) system for the remediation of trichloroethylene (TCE)-contaminated water using zero valent iron (ZVI) and direct current (DC) and to investigate the mechanisms responsible for TCE degradation in different ZVI-DC configurations. A series of column experiments was conducted to evaluate the effect of different arrangements of electrodes and ZVI barriers in the column on the TCE removal capacity (RC). In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive dechlorination of TCE was improved up to six times with simultaneous application of ZVI and DC compared to that using ZVI only. The most effective arrangement of electrode and ZVI for TCE removal was the column set with ZVI and a cathode installed at the down gradient. Based on the electrokinetic study for the column systems with only DC input, single acid front movement could explain different RCs. An enhanced dechlorination rate of TCE using E2PRB systems, compared to a conventional PRB system, was observed, and is considered to be attributed to more electron sources: (1) external DC, (2) electrolysis of water, (3) oxidation of ZVI, (4) oxidation of dissolved Fe2+, (5) oxidation of molecular hydrogen at the cathode, and (6) oxidation of Fe2+ in mineral precipitates. Each of these electron sources was evaluated for their potential influencing the TCE RC through the electron competition model and energy consumption. A strong correlation between the quantity of electrons generated, RC, and the energy-effectiveness was found.  相似文献   

3.
Stable isotopes of water and 3H–3He were used to delineate recharge patterns and contaminant transport for a granitic regolith aquifer in an industrial complex in Wonju, South Korea, that has historically been contaminated with chlorinated solvents including trichloroethene (TCE) and carbon tetrachloride (CT). Groundwater recharge mainly occurred in upgradient forested areas while little recharge occurred in the downgradient industrial areas covered with extensive sections of impermeable pavement and paddy fields. δ18O and δD data indicated that groundwater was mainly derived from summer precipitation. The apparent groundwater ages using 3H–3He ranged from 1 to 4 yrs in the upgradient area and from 9 to 10 yrs in the downgradient area. Comparison of groundwater flow velocities based on Darcy’s law and those calculated with simple mass balance models and groundwater age supported the presence of preferential pathways for TCE movement in the study area. Measureable TCE was observed in groundwater irrespective of groundwater age. Considering the 3-yr duration of the TCE spill, 14 yrs before sampling, this indicates that TCE plumes were continuously fed from sources in the unsaturated zone after the spill ended and moved downgradient without significant degradation in the aquifer.  相似文献   

4.
为研究硝酸根对颗粒状铁降解三氯乙烯的影响,进行了柱实验和相应的反应铁腐蚀电位测定。在硝酸根离子存在条件下,铁的腐蚀电位相应升高,系统条件也因之发生变化,导致钝性的铁氧化物在铁表面生成。因而,三氯乙烯和硝酸根离子降解速率明显减小, 并且降解速率减小的程度与硝酸根离子的浓度成比例。当污染液流过反应柱时,硝酸根离子与铁反应, 被还原为氨根离子。该反应造成硝酸根离子的浓度梯度,使钝化区在柱中上移,从而影响了三氯乙烯的降解曲线。与三氯乙烯单独与铁反应相比,当含4 7 mg/L硝酸根的三氯乙烯溶液流经反应柱170 孔隙体积后,降解50% 三氯乙烯所需的时间(t50) 从小于4 h增加到大于10 h;而当三氯乙烯溶液中加入100 mg/L硝酸根离子,仅17 孔隙体积溶液流经反应柱后,三氯乙烯降解t50就已大于14 h。研究结果表明,由于硝酸根离子对铁的腐蚀电位和铁表面氧化膜的不利作用,在处理靶污染物为高浓度硝酸根离子和三氯乙烯共同污染的地下水时,铁渗透反应隔栅不是最佳选择。如果靶污染物中硝酸根离子浓度比较低,则在设计铁隔栅时应考虑到硝酸根离子造成的不利因素,相应增加铁墙的厚度,从而确保三氯乙烯的降解效果。  相似文献   

5.
A simple, single-well push-pull test was conducted at a TCE-contaminated site to estimate the site-specific TCE degradation and permanganate (MnO4) consumption rate. Known quantities of a conservative tracer (Br) and permanganate were rapidly injected into a saturated aquifer then periodically sampled during extraction from the same well. Concentrations of Br, TCE, and MnO4 were measured; breakthrough curves (BTCs) for all species of solute were determined. Data analysis of BTCs for bromide and TCE showed that the first-order rate constant of TCE degradation by MnO4is 1.67 ± 0.152 h−1. Further, the in situ MnO4 demand rate by TCE and aquifer materials is estimated to be 0.54 ± 0.371 h−1. This study demonstrates that in situ push-pull tests are useful and economical tools for field investigations to determine contaminant reaction and oxidant consumption rates, which may then be used to optimize groundwater remediation designs.  相似文献   

6.
Environmental remediation technologies that involve the use of sulfate-reducing bacteria constitute a feasible alternative to the remediation of sites polluted with heavy metals and metalloids. The present study evaluates hydrogen sulfide production and arsenic removal by two microbial consortia (C1 and C2) in batch systems exposed to different arsenic concentrations and oxidation states. We identify the following three consecutive stages of arsenate removal: (1) hydrogen sulfide production/accumulation, (2) arsenate reduction to arsenite associated with the incomplete oxidation of hydrogen sulfide to elemental sulfur and (3) arsenic polysulfide precipitation as the main arsenic removal mechanism from aqueous solution. Kinetic parameters are determined in regard to the arsenic oxidation state through the fit of hydrogen sulfide production. The r max reached by C1 and C2 is increased seven- or eightfold when 250 mM As[+5] was used instead 250 mM As[+3]. Arsenic removal by extracellular precipitation of arsenic polysulfides associated with elemental sulfur precipitation detected through scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM–EDS) can explain the exceptional value of r max observed at 250 mM during As[+5] exposition.  相似文献   

7.
Groundwater from a shallow aquifer in Mobara, a city in a natural gas field in Chiba Prefecture, Japan, was found to contain a significant amount of dissolved methane (<3.1 mM) along with nitrate, phosphate and methane-oxidizing bacteria (methanotrophs, <9.9×106 MPN ml–1) which can degrade trichloroethylene (TCE). This water exhibited high methanotroph growth activity and rapid degradation of TCE. This water was introduced into a TCE-contaminated aquifer. The concentration of TCE at the monitoring well 2 m down-gradient of the injection pit decreased from 128 g L–1 before the injection to less than the lower detection limit of 12.5 g L–1 after the injection, while it decreased only slightly (to 86 g L–1) when control water was injected. These results demonstrate the feasibility of utilizing a natural groundwater resource containing methane and methanotrophs without any additives for bioremediation of a TCE-contaminated site.  相似文献   

8.
《Applied Geochemistry》2001,16(9-10):1129-1137
A sand filter has been built as a pilot plant with the purpose of biological precipitation of Fe from ground water polluted with mainly chlorinated aliphatics. The ground water is pumped directly from a well in a polluted ground water aquifer in Esbjerg, Denmark. The pollution includes trichlorethylene and tetrachlorethylene together with smaller amounts of pesticides. Furthermore the best conditions for Fe precipitating bacteria were not expected to be present because of a relatively high O2 content, up to 6.7 mg/l, a low Fe content, 0.2 mg/l and a pH of ∼5 in the ground water. Added FeSO4 increased the Fe content of the ground water to about 4 mg/l. These rather extreme conditions for precipitating Fe were observed over a period of 3 months. The goal of the research was to observe the mechanism of Fe precipitation in a sand filter in the above-mentioned conditions comparative to normal conditions for biotic as well as abiotic Fe mineralization in sand filters of fresh water treatment plants. The Fe precipitating bacterium Gallionella ferrugenia was found to dominate the biotic Fe oxidation/precipitation process despite the extreme conditions. A huge amount of exopolymer from Gallionella was present. The precipitated Fe oxide was determined to be ferrihydrate. The rate of the Fe oxidation/precipitation was found to be about 1000 times faster than formerly found for abiotic physico-chemical oxidation/precipitation processes. The hydrophobic pesticides and some of their degradation products were not adsorbed in the filter. An added hydrophilic pesticide was adsorbed up to 40%. Trichlorethylene was not adsorbed in the filter. The reason for the poor adsorption of the hydrophobic compounds and trichlorethylene is due to the pronounced hydrophilic property of the exopolymers of Gallionella and the precipitated ferrihydrite.  相似文献   

9.
To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe (N=5), Mn (N=6), Cu (N=1), TCE (N=6), PCE (N=8), 1,2-DCA (N=1), and 1,2-dichloropropane (N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas (P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.  相似文献   

10.
《Applied Geochemistry》2006,21(5):766-781
A method for determining compound-specific Cl isotopic compositions (δ37Cl) was developed for tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cis-DCE), trans-dichloroethene (trans-DCE) and 1,1-dichloroethene (1,1-DCE). The isotope ratio mass spectrometry (IRMS) used in this study has nine collectors, including two for m/z 50 and 52 (CH3Cl) and two for m/z 94 and 96 (CH3Br). The development of this method is based on the fact that fragments with mass ratios of 94/96, 95/97 and 96/98 are produced from PCE, TCE and DCE isomers during ion bombardment in the source of a mass spectrometer. Using continuous flow isotope ratio mass spectrometry coupled with gas chromatography (GC–CF-IRMS), it is possible to separate these compounds on-line and directly measure the Cl isotopic ratios of the fragments with the specific mass ratios.Both pure phase and aqueous samples were used for Cl isotopic analysis. For pure phase samples, a vapour phase of the chlorinated ethenes was injected directly into the GC, whereas the solid phase micro extraction (SPME) method was used to extract these compounds from aqueous solutions. The precisions of this analytical technique were ±0.12‰ (1σ, n = 30), ±0.06‰ (1σ, n = 30), and ±0.08‰ (1σ, n = 15) for PCE, TCE and DCE isomers, respectively. The limits of quantification (LOQ) for analyzing Cl isotopic composition in aqueous solutions were 20, 5, and 5 μg/L for PCE, TCE and DCE isomers, respectively. This corresponds to 6–9 nano-mole of Cl, which is approximately 80 times lower than the most sensitive existing method. Compared to methods previously available, this new development offers the following advantages: (1) The much lower LOQ make it possible to extract these compounds directly from aqueous solutions using SPME without pre-concentration; (2) The linking of a GC with an IRMS eliminates off-line separation; and (3) Because the fragments used for isotopic ratio measurement are produced during ion bombardment in the mass spectrometer, there is no need to convert chlorinated ethenes to methyl chloride. As a result, this technique greatly enhances the efficiency for isotopic analysis by eliminating procedures for pre-concentration, off-line separation and sample preparation. In addition, it also reduces the potential for isotopic fractionation introduced during these procedures.Compound-specific Cl stable isotope analysis can be used as a tool to study the sources of organic contaminants in groundwater and their behaviour in the subsurface environments. It may also assist in understanding processes such as transport, mixing, and degradation reactions.  相似文献   

11.
《Applied Geochemistry》1999,14(4):531-541
An empirical kinetic rate law appropriate for many ground waters (neutral pH, aerobic) has been determined for the aqueous oxidation of trichloroethene (TCE), one of the most volumetrically important chlorinated hydrocarbon pollutants. Mass balances were monitored by measuring both the rate of disappearance of TCE and the rate of appearance of CO2 and Cl. Dilute buffer solutions were used to fix pH and stoichiometrically sufficient amounts of dissolved O2 were used to make the reactions pseudo zero-order in O2. Using a standard chemical kinetic approach, two orders-of-magnitude in initial TCE concentration were spanned and the resulting double-log plot (log concentration vs. log initial rate) was used to determine the rate constant (k=5.77±1.06×10−7 s−1) and “true” (i.e., with respect to concentration, not time) reaction order (nc=0.85±0.03) for the rate law. By determining rate constants over the temperature interval 343–373 K, the Arrhenius activation energy (Ea) for the reaction was determined to be 108.0±4.5 kJ/mol. The rate law and derived kinetic parameters may be used in reactive transport simulators in order to account for aqueous oxidation of TCE as a function of temperature.  相似文献   

12.
Chloroaromatics in groundwater: chances of bioremediation   总被引:1,自引:0,他引:1  
. The potential for biodegrading of mono-, di- and trichlorobenzenes in a contaminated aquifer in Bitterfeld (Saxony-Anhalt) was tested both in the laboratory and using on-site column experiments. Under the prevailing anaerobic conditions, the reductive dechlorination of 1,4-dichlorobenzene (1,4-DCB) takes place very slowly. Under aerobic conditions the indigenous micro-organisms are able to mineralize monochlorobenzene (MCB) and 1,4-DCB. The degradation rates for the other two isomeric dichlorobenzenes and for 1,2,4-trichlorobenzene (1,2,4-TCB) under aerobic conditions are significantly lower. Indications were found that once the oxygen has been consumed, Fe(III) species can be used as alternative electron acceptors.  相似文献   

13.
Stable oxygen isotopic fractionation during inorganic calcite precipitation was experimentally studied by spontaneous precipitation at various pH (8.3 < pH < 10.5), precipitation rates (1.8 < log R < 4.4 μmol m− 2 h− 1) and temperatures (5, 25, and 40 °C) using the CO2 diffusion technique.The results show that the apparent stable oxygen isotopic fractionation factor between calcite and water (αcalcite–water) is affected by temperature, the pH of the solution, and the precipitation rate of calcite. Isotopic equilibrium is not maintained during spontaneous precipitation from the solution. Under isotopic non-equilibrium conditions, at a constant temperature and precipitation rate, apparent 1000lnαcalcite–water decreases with increasing pH of the solution. If the temperature and pH are held constant, apparent 1000lnαcalcite–water values decrease with elevated precipitation rates of calcite. At pH = 8.3, oxygen isotopic fractionation between inorganically precipitated calcite and water as a function of the precipitation rate (R) can be described by the expressions
at 5, 25, and 40 °C, respectively.The impact of precipitation rate on 1000lnαcalcite–water value in our experiments clearly indicates a kinetic effect on oxygen isotopic fractionation during calcite precipitation from aqueous solution, even if calcite precipitated slowly from aqueous solution at the given temperature range. Our results support Coplen's work [Coplen T. B. (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957], which indicates that the equilibrium oxygen isotopic fractionation factor might be greater than the commonly accepted value.  相似文献   

14.
. The finely ground seeds of Canavalia ensiformis (jack bean) and Brachystegen eurycoma (achi seed) were used in the treatment of sewage sludge. They were found to improve sludge filterability and compare favourably with the traditional, ferric chloride conditioner. The optimum dosage for each sample can be determined by drawing a tangent to the corresponding curve of each sample at the point where there is a sharp break between the straight and curvilinear portion. In this work, the optimum values for C. ensiformis and B. eurycoma are 19.50% (0.39 g/cm3) and 21.5% (0.4 g/cm3) respectively. For ferric chloride, the optimum value is 25% (0.5 g/cm3). These results show that ferric chloride is still a better conditioner than both the other conditioners. However, during sludge filtration, cake and filtrate concentration increased with increasing dosages of both C. ensiformis and B. eurycoma samples. This indicates that they would be useful as conditioners if the primary product of filtration is the procurement of low filtrate concentration or high-quality cake.  相似文献   

15.
《Applied Geochemistry》1995,10(5):547-552
Stable Cl and C isotope ratio results for 3 selected chlorinated solvents, perchloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) provided by 4 different manufacturers are presented. The isotope ratio for all compounds range between −3.5 and +6.0‰ forδ37Cl and from −37.2 to −23.3%. forδ13C. The greatest37Cl difference between manufacturers is observed in the TCE samples which showδ37CI values of −2.5%o for PPG, +2.43‰ for ICI and +4.4‰ for DOW. TCAs show a smaller range (−2.4 to +2.0‰), while the TCEs have slightly different37Cl contents. The13C data show the most distinctδ13C values for PCEs (−23.3 for DOW, −24.1 for Vulcan, −33.8 for PPG and −37.2‰ for ICI) while both TCEs and TCAs show a smallerδ13C range, but still distinct differences. These preliminary data suggest that each manufacturer and solvent type may have distinctiveδ637Cl andδ13C values. These results show that by using a combination of37Cl and13C, there is a potential to indicate a specific source of chlorinated solvents, as well as an ability to delineate contamination episodes caused by these compounds in groundwaters.  相似文献   

16.
An initial assessment of an old manufacturing site with groundwater impacted by trichloroethene (TCE) contamination in the metropolitan New York area showed that the TCE was being removed naturally by reductive dechlorination. However, complete dechlorination was not expected at the site because the process was progressing too slowly under transitional to aerobic conditions at a degradation constant of –0.0013 and a TCE half life of 533 days. A pilot test was conducted at the site in which a carbohydrate substrate (molasses) was injected into the groundwater to create an In-Situ Reactive Zone (IRZ). Post-pilot test groundwater sampling and analysis indicated that an IRZ was created successfully as the total organic carbon (TOC) content and conductivity increased significantly while oxidation-reduction (REDOX) potential and dissolved oxygen (DO) decreased. The created IRZ caused enhanced reductive dechlorination of TCE at the site, found to proceed with a degradation constant of –0.0158 and a TCE half life of 44 days.  相似文献   

17.
. Acid atmospheric deposition may enter an environmental ecosystem in a variety of forms and pathways, but the most common components include sulfuric and nitric acids formed when rain water interacts with sulfur (SOx) and nitrogen (NOx) emissions. For many soils and watersheds sensitive to acid deposition, the predominant chronic effect appears to be a low pH, loss of base cations, and a shift in the mineral phase controlling the activity of Al3+ and/or SO4 in solution. Soil solutions from lysimeters at various depths were taken at two sites in the Daniel Boone National Forest, Kentucky, USA, to evaluate potential impacts caused by acid deposition. The sites chosen were in close proximity to coal-burning power plants near Wolfe and McCreary counties and contained soils from the Rayne and Wernock series, respectively. Physicochemical characteristics of the soils revealed that both sites contained appreciable amounts of exchangeable acidity in the surface horizons, and that their base saturation levels were sufficiently low to be impacted adversely by acidic inputs. Soil solution data indicated that the sites were periodically subjected to relatively high NO3– and SO4 inputs, which may have influenced spatial and temporal variation in Al and pH. As a consequence, the formation of Al-hydroxy-sulfate minerals such as jurbanite, alunite and basaluminite were thermodynamically favored over gibbsite. Given these conditions, long-term changes in soil solution chemistry from acid deposition are acknowledged.  相似文献   

18.
A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants’ migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent–daughter chain reaction and the RT3D aerobic–anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.  相似文献   

19.
Partitioning of strontium during spontaneous calcite formation was experimentally studied using an advanced CO2-diffusion technique. Results at different precipitation rates and T = 5, 25, and 40 °C show that at constant temperature Sr incorporation into calcite is controlled by the precipitation rate (R in μmol/m2/h) according to the individual expressions
  相似文献   

20.
The relationship of atrazine-degrading bacteria Arthrobacter sp. HB-5 and nitrogen and phosphorus fertilizer to atrazine degradation and detoxification in soil was investigated in a microcosm pot experiment. Treatments of soil containing atrazine (AW) with atrazine plus strain HB-5 alone (A), together with atrazine and strain HB-5 plus nitrogen alone (AN), phosphate alone (AP), and nitrogen and phosphate together (ANP) were used to investigate atrazine degradation and ecotoxicity. Atrazine residues in the soils were determined by high performance liquid chromatography, while soil ecotoxicity was tested by micronucleus (MN) assay of Vicia faba root tip cells. The results showed that degradation of atrazine in soil could be facilitated by the treatment of strain HB-5 as well as strain HB-5 application with the addition of nitrogenous and/or phosphorus fertilizers. The degradation rates varied as the following: ANP > AP > AN > A > AW in different treatments. At 10 days post treatment, degradation efficiency of over 90 % was achieved in all strain HB-5 treatments except AW, but with no statistically significant differences found between treatments. Soil ecotoxicity was significantly reduced along with the degradation of atrazine by strain HB-5, and the ecotoxicity of soils with applied fertilizer was below that of treatments without fertilizer. On the seventh day and later, the MN frequencies of all treatments were decreased in the control levels except for AW. Thus, adjusting soil nutrient contents not only promoted strain HB-5 to remove atrazine in soil but also mitigated soil ecotoxicity effects caused by atrazine. These results are important keystones for future remediation of atrazine-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号